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Accurate characterization of snow-covered area (SCA) and snow water equivalent (SWE) in complex terrain is
needed to improve estimation of streamflow timing and volume, and is important for land surface modeling.
Direct field observations of SWE, SCA and atmospheric forcing inputs for models of snow accumulation and
ablation are typically sparsely sampled in space. Satellite imagery is, therefore, a critical tool for verification
and confirmation of snow model estimates of SCA. The Landsat system provides snow-covered area estimates
at a spatial resolution of 30 m with a 16-day return interval, while daily estimates of SCA and fractional SCA
(fSCA) are available at 500 m from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study
describes and tests a linear model to downscale MODIS MOD10A1 fSCA (500 m) data to higher-resolution
(30 m) spatially explicit binary SCA estimates. The algorithm operates on the assumption that two variables,
potential insolation and elevation, control differential ablation of snow cover throughout spring melt at 30 m
to 500 m scales. The model downscales daily 500 m fSCA estimates from MODIS to provide daily SCA estimates
at a spatial resolution of 30 m, using limited Landsat SCA for calibration and independent Landsat SCA estimates
for validation. Downscaled SCA estimates demonstrate statistically significant improvement from randomly
generated model ensembles, indicating that insolation and elevation are dominant factors controlling the
snow cover distribution in the semi-arid, mountainous region in southwestern Idaho, USA where this study is
performed. Validation is performed with Landsat data not used for calibration, and is also performed using
Landsat 500 m aggregate fSCA instead of MODIS fSCA as an ideal case. Downscaled estimates show reasonable
accuracy (test metric outperforms random ensembles at p = 0.01 significance level for multiple ranges of
snow cover) with only one calibrated parameter.
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1. Introduction

In complex terrain, the characterization of snow-covered area (SCA)
and snowwater equivalent (SWE) at a resolution less than 500m could
substantially improve estimation of streamflow timing and volume, as
SCA can vary over length scales much less than the resolution of data
from the Moderate Resolution Imaging Spectroradiometer (MODIS)
(Anderson, McNamara, Marshall, & Flores, 2014). Since more than
one-sixth of the world's population depends on seasonal snowmelt for
water resource supply (Barnett, Adam, & Lettenmaier, 2005), predicting
the spatiotemporal evolution of snow processes is of great importance
for conveying reliable hydrologic information. Accumulation and melt-
ing of snow occur variably, producing heterogeneity in snowpack disap-
pearance that must be modeled with accuracy in order to estimatemelt
runoff for a catchment (Clark et al., 2011). However, the ability to pre-
dict these variable snow processes is limited in part because variability
occurs at length scales of less than 100m, while in situ observation net-
works have a resolution several orders of magnitude larger and are con-
fined to a relatively narrow elevation range in flat terrain (Bales et al.,
2006; Martinec & Rango, 1981). In addition, while field sampling can
be performed at the necessary spatial resolution, it is time consuming
and costly and therefore is typically limited to small spatial extents
and coarse temporal resolution (Elder, Dozier, & Michaelsen, 1991).
Thus, satellite remote sensing observations are often employed in
conjunctionwith simulationmodels to improve the estimation of snow-
pack states and resultant hydrologic fluxes. For example, studies assim-
ilating satellite-derived areal snow cover information into hydrologic
models have demonstrated improvements to simulated streamflow
and SWE (Clark et al., 2005; Rodell & Houser, 2004; Thirel, Salamon,
Burek, & Kalas, 2011). In other studies, snowmelt depletion curves
have been accurately constructed using similar SCA information in com-
bination with energy balancemelt modeling (Homan, Luce, McNamara,
& Glenn, 2011). Retrospective analysis of SCA data combined with dis-
tributed temperature-index and energy balance snowmelt modeling

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2014.07.001&domain=pdf
http://dx.doi.org/10.1016/j.rse.2014.07.001
mailto:reggiewalters@u.boisestate.edu
mailto:katelynwatson@u.boisestate.edu
mailto:hpmarshall@u.boisestate.edu
mailto:jmcnamar@boisestate.edu
mailto:lejoflores@u.boisestate.edu
Unlabelled image
http://dx.doi.org/10.1016/j.rse.2014.07.001
Unlabelled image
http://www.sciencedirect.com/science/journal/00344257


Table 1
Image calibration dates and sensors utilized with corresponding cloud coverage for the
Landsat scenes used in this study. All scenes are path 41, row 30.

Scene # Date TM 5 ETM+ 7 Cloud cover %

1 02/03/2000 x 0
2 02/19/2000 x 0
3 03/01/2001 x 0
4 04/18/2001 x 4
5 05/04/2001 x 0
6 02/16/2002 x 2
7 03/04/2002 x 2
8 04/08/2003 x 6
9 05/10/2006 x 0
10 04/27/2007 x 0
11 03/12/2008 x 20
12 05/15/2008 x 13
13 02/01/2011 x 6
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has been used to reconstruct basin-wide SWE at the time of maximum
accumulation, comparing favorably with results of intensive field cam-
paigns (Cline, Bales, & Dozier, 1998; Durand, Molotch, & Margulis,
2008; Martinec & Rango, 1981; Molotch, 2009). This approach depends
on distinct accumulation and ablation periods, however, and therefore
may provide accurate peak SWE distribution only under certain condi-
tions. Mid-winter rain and melt, as well as late spring snowfall can
cause problems with this approach, as the technique assumes ablation
dominates and albedo is constant between SCA estimates.

The space-borne Landsat remote sensing system is capable of retrieving
snow-covered area and albedo data for hydrologic studies at the catch-
ment scale (Dozier, 1989; Dozier & Marks, 1987; Rosenthal & Dozier,
1996). Similarly, the Moderate Resolution Imaging Spectroradiometer
(MODIS) instrument, aboard NASA Aqua and Terra satellites, can be used
to map SCA at a much higher temporal but lower spatial resolution (Hall
& Riggs, 2007; Hall, Riggs, & Salomonson, 1995; Justice et al., 1998;
Painter et al., 2009; Riggs, Hall, & Salomonson, 1995; Salomonson &
Appel, 2004, 2006). These products are highly valuable for their utility in
updating and constraining distributed snow models (e.g., Clark et al.,
2005; Luce, Tarboton, & Cooley, 1998, 1999; Thirel et al., 2011). However,
each of these snow cover products has spatial or temporal limitations.
For instance, Landsat has a relatively high spatial resolution of 30 m with
a 16-day return interval under ideal, cloud-free conditions. Conversely, es-
timates fromMODIS can be derived at a 500m spatial resolution on a daily
basis. The fractional snow-covered area (fSCA) product derived from
MODIS (Hall & Riggs, 2007; Riggs et al., 1995; Salomonson & Appel,
2004, 2006) provides a sub-grid approximation by estimating the per-
centage of each pixel that is snow-covered, but does not explicitly re-
solve SCA at sub-pixel scales. The MODIS fSCA product has led to
significant improvements in ablation modeling at coarse resolutions
(e.g. Yatheendradas et al., 2012). Many model applications, however,
require snow cover information at finer resolutions. For example, hy-
drologic models in mountainous complex terrain commonly adopt the
30 m resolution of readily available digital elevation models. At this
scale, knowledge of the percentage of a 500 m pixel that is snow-
covered is of value only in understanding basin-scale trends in snow
cover. Whereas Landsat offers a spatially finer resolution product, the
temporal resolution is not sufficient. Since snow cover often varies ex-
tensively within 500 m and over 2 weeks, it is desirable in many appli-
cations to have snow cover information at the spatial resolution of
Landsat and the temporal resolution of MODIS.

The objective of this work is to develop and describe an efficient ap-
proach to downscaling melt-season fractional snow-covered area (fSCA)
data fromMODIS (spatial resolution 500m) to a higher-resolution (spa-
tial resolution 30 m), yielding a spatially explicit SCA estimate at 30 m
resolution. The derived high-resolution snow cover product is meant
to be used to constrain future snow cover simulations. The proposed
model is based on the hypothesis that the distribution of snow-
covered area in a partially snow-covered region is non-random and
can be predicted using terrain physiographic features (elevation,
slope, and aspect). Further, since these terrain features are relatively
constant year to year, snow distribution patterns are assumed to occur
in similar patterns from year to year in agreement with observations
(Sturm &Wagner, 2010). The algorithmwe develop is based on physio-
graphic characteristics that can be derived from ancillary data products,
principally digital elevation models (DEMs). The algorithm assigns bi-
nary snow cover to a grid co-registered with a 30 m DEM that is used
to derive normalized potential incoming solar radiation (insolation)
and normalized relief within each 500mMODIS pixel. Themethod pre-
serves the predicted snow cover fraction at the 500 m scale. We cali-
brate and test the model using 13 Landsat images for a region in
southwestern Idaho. The proposed approach assumes that potential in-
solation and elevation control the spatial distribution of snow cover at
the sub 500 m scale. A similar approach could be developed for other
factors controlling the distribution of snow cover in regions in which
SCA is controlled by other processes.
In Section 2we describe the satellite and terrain datasets used in this
study. Section 3 outlines algorithm design, development, and proce-
dures used for calibration and validation. Model results are presented
in Section 4 and we provide a brief synopsis of the results, implications,
and model limitations in Section 5.

2. Datasets

2.1. Remotely sensed snow cover: hillslope scale

The Landsat Program has provided multispectral, high-resolution
data observations across the entire globe for over 40 years, offering a
unique retrospective and near real-time data record for many applica-
tions. Multispectral band information from the Landsat Thematic Map-
per (TM) and Enhanced Thematic Mapper (ETM+) instruments is
often used for automated mapping of snow cover. The Normalized Dif-
ference Snow Index (NDSI) has beenused in efforts to distinguish snow-
covered pixels from other land surfaces, leveraging the large difference
in reflectance of snow in the visible and shortwave infrared portions of
the electromagnetic spectrum (Dozier, 1989). This ratio is described as

NDSI ¼ Rvis−Rswir

Rvis þ Rswir
ð1Þ

where Rvis represents reflectance in a visible bandand Rswir is reflectance
in a short-wave infrared band. These correspond to Landsat TM bands 2
and 5, respectively. The NDSI is an analog to the ubiquitously used
Normalized Difference Vegetation Index (NDVI) (Tucker, 1979) which
utilizes similar principles to estimate vegetation properties. Other stud-
ies have exploited spectral mixture analyses to classify snow-covered
and snow-free pixels, utilizing spectral libraries for pure end-member
reflectance values and solving a set of linear combinations of their rela-
tive fractions for the observed reflectance in each pixel (e.g., Nolin,
Dozier, & Mertes, 1993; Painter, Dozier, Roberts, Davis, & Green, 2003;
Rosenthal & Dozier, 1996).

In this study, a series of 13 Landsat scenes over a mid-latitude,
semi-arid region in southwestern Idaho (path/row 41/30) are com-
piled over a range of snowmelt season dates (January to May) be-
tween 2000 and 2011. We employ the NDSI to estimate binary
snow coverage. These scenes serve as high-resolution calibration
and validation data for the development of the downscaling routine.
A combination of Landsat TM and ETM+ scenes are chosen in which
cloud cover is minimal (i.e. b20% for whole scene) and qualitatively
inspected such that any perceived cloud cover does not occur over
the mountainous regions of interest (Table 1). Within the Landsat
scenes, we chose subsets known to retain seasonal snow cover for
calibration and validation regions and that are of interest for model-
ing exercises (Fig. 1). Subset (a) in Fig. 1 contains the Dry Creek Ex-
perimental Watershed (DCEW), a 27 km2 watershed north of Boise



Fig. 1. Landsat band 2 image (path/row: 41/30) for 18 March 2010 with SW Idaho location inset. The model is calibrated over subset a and validated over subsets b and c.
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(Graham, Barnard, Kavanagh, & Mcnamara, 2012; Kelleners,
Chandler, McNamara, Gribb, & Seyfried, 2010; Kunkel, Flores,
Smith, McNamara, & Benner, 2011; McNamara, Chandler, Seyfried,
& Achet, 2005; Stieglitz et al., 2003; Tyler et al., 2008), while subset
(b) contains Reynolds Creek Experimental Watershed (RCEW) and
Critical Zone Observatory, a 239 km2 watershed in the Owyhee
mountains that is maintained by the USDA Agricultural Research
Service (Flerchinger, Marks, Reba, Yu, & Seyfried, 2010; Johnson &
Hanson, 1995; Marks, Link, Winstral, & Garen, 2001; Reba et al.,
2011; Winstral & Marks, 2002). Methods for classification of Landsat
snow-covered pixels are described in further detail in Section 3.

2.2. Remotely sensed snow cover: MODIS scale

MODIS MOD10A1 Level 3 Version 5 (Hall and Riggs, 2007; Riggs
et al., 1995) data are obtained for downscaling. This product is a daily re-
trieval of fSCA based on data in visible and short-wave infrared bands
from the MODIS sensor onboard the NASA Terra satellite. The
MOD10A1 product produces fSCA estimates based on an empirical linear
relationship between MODIS NDSI and pixel snow fraction, inferred
from Landsat data using an NDSI threshold approach. A similar product
is available fromAqua (MYD10A1), however,we choose to use the Terra
version in this study because Terra fSCA estimates performed better than
Aqua with lower RMSE values found during a validation study; this is
largely due to a pixel misregistration issue between NDSI bands in the
Aqua MODIS instrument (Salomonson & Appel, 2006). Recent work
has suggested that the MOD10A1 fractional snow cover potentially
overestimates snow cover fraction in some regions, particularly in
North America (Rittger, Painter, & Dozier, 2012). A more recent fSCA
product, the MODIS Snow-Covered Area and Grain Size (MODSCAG)
model, utilizes spectral mixture analysis with MODIS reflectance data
to estimate fSCA and has demonstrated promising results in validation
(Painter et al., 2009; Rittger et al., 2012), but these data are not readily
available to the general scientific community at this time. Since the pur-
pose of this study is not to evaluate the skill of a particular remote sens-
ing product, we use Terra MOD10A1 data for this project. Future work
may explore the utility of the downscaling approach with other snow
remote sensing products.

2.3. Terrain data

We use Shuttle Radar Topography Mission (SRTM) elevation data
acquired from the Global Land Cover Facility. This dataset was acquired
by the Space Shuttle Endeavour on mission STS-99 during February
2000 and provides nearly global coverage at 30 m resolution. The
WRS-2 tile edition of the 30 m DEM, which is co-registered with the
Landsat scene of interest was obtained, substantially easing compari-
sons between modeled and observed Landsat snow-covered/snow
free pixels during the calibration and validation phases of the study.
Local topographic slope (gradient in direction of steepest descent) and
aspect (cardinal direction of steepest descent) are extracted using the
topographic modeling tools in ENVI resulting in 30 m grids with identi-
cal spacing and extent to that of the DEM. A mountain slope solar radi-
ation algorithm (Swift, 1976) is applied to these terrain data inMATLAB
producing indices for daily, integrated potential incoming solar radia-
tion (insolation) at 30 m resolution. Details concerning the radiation
computation and treatment are discussed in the methodology section
of this paper.

image of Fig.�1
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3. Downscaling methods

In this sectionwe describe the downscalingmodel used to derive 30
m binary snow covermaps using 500m fSCA estimates fromMODIS. The
developed algorithm makes several important assumptions about
drivers of variable snow cover in the study region, which are enumerat-
ed here:

• (1) Two variables, potential insolation and elevation, dominantly con-
trol the differential ablation of snow cover throughout spring melt at
30 m to 500 m scales (Anderson et al., 2014).

• (2) Snowwill disappear from pixels prone to increased solar radiation
exposure before those that are more obscured.

• (3) Higher elevation pixels will retain a deeper snow pack due to oro-
graphic effects during initial accumulation and temperature lapse
rates during melt onset. This effect should be preserved during abla-
tion, as lower elevation pixels melt before higher ones.

The degree to which these predictor variables affect the snow cover
distribution is a question that is addressed by this study and is likely a
function of the spatial resolution at which the fSCA observation occurs
(e.g. 500 m in the case of individual MOD10A1 grid cells).

This section is organized as follows: first, the calculation of the solar
radiation index is described. Next, the derivation of the 30 m binary
snow-covered maps from the Landsat scenes shown in Table 1 is
discussed. Reprojection and subsetting of theMODIS data for the region
is presented. The downscaling routine is then described, followed by the
parameter calibration and validation methods.

3.1. Terrain influence: normalized solar radiation index and elevation

To calculate solar radiation, we employ a simple algorithm requiring
Julian date, latitude, slope inclination and aspect as inputs to estimate
daily potential integrated irradiation at each DEM pixel (Swift, 1976).
We extract the terrain slope and aspect data from a 30 m DEM. The ra-
diation model does not account for atmospheric attenuation due to
changes in optical depth or aerosol presence, making only a series of
trigonometric adjustments to the extraterrestrial solar constant. We
are interested in the relative comparison of insolation values over com-
plex terrain within each MODIS pixel and thus do not attempt to adjust
for these effects as they would be nearly constant at the 500 m scale. In
order to achieve a relative value for solar radiation, we normalize the
potential insolation for eachMODIS pixel to that of a corresponding hor-
izontal plane at the same location,

f sl ¼
Rslope

Rhoriz
ð2Þ

where Rslope and Rhoriz are pixel-scale potential insolation on the local
slope and horizontal plane, respectively, and fsl is the normalized term
referred to as the slope factor. We compute fsl for every Julian date
over each subset domain depicted in Fig. 1. For the computed time-
series of fsl over each subset region (Fig. 1), theminimumandmaximum
slope factors over the entire season, f sl

max and f sl
min, are stored for each

domain.
A normalized slope factor is next computed within each MODIS

pixel. Rather than normalizing to the extreme values within each
MODIS pixel, we normalize to the maximum and minimum calculat-
ed slope factors across the domain for the entire season,

f norm ¼ f sl
f sl

max− f sl
min

ð3Þ

where f sl
max is the maximum slope factor for the whole season, and

f sl
min is the respective minimum. Since there is a 30 m pixel in

every domain that is sufficiently steep and North-facing that there
is zero potential direct irradiance at least one day of the year, the
minimum observed slope factor, f sl
min , for each domain is zero.

Thus, Eq. (3) reduces to

f norm ¼ f sl
f sl

max ð4Þ

Because the slope factor is normalized to the value for a horizontal
surface, f sl

max is largest in the winter when sun angles are small. fnorm
therefore has a large range in winter, and a much smaller range in late
spring, capturing the dynamic range of solar declination angles
throughout the year and the distribution of slopes and aspects in a
given region of complex terrain. This serves to capture the intra-
seasonal variations in solar declination and, therefore, in insolation as
a driver of ablation. The range of values of fnorm within each MODIS
pixel will thus be narrower than [0,1] on any given date except for the
time and location(s) containing the maximum seasonal slope factor,
f sl

max.
Elevation for each 30 m pixel is normalized to the maximum range

of values observed in a given 500mMODIS grid cell throughout the do-
main of interest. This process standardizes the elevation variable to rep-
resent the degree of ruggedness or flatness within a MODIS cell. For the
MODIS cell(s) containing this maximum range, the normalized values
will span the [0,1] interval. All other 500m cellswill have a narrower in-
terval. Elevation is normalized in a reverse fashion such that the mini-
mum observed elevation has a greater value and the maximum
elevation pixel takes on a lower normalized value:

znorm ¼ zmax−z
zRmax

ð5Þ

where znorm is the variable name assigned to the normalized elevation
grid, zmax represents the maximum elevation within the MODIS cell,
and zmax

R represents the maximum 500 m window range throughout
the domain.

3.2. Landsat binary grid processing

An empirical method is used to identify snow-covered pixels within
Landsat subset grids. We employ the NDSI with a threshold criteria test
similar to the SNOMAP algorithm (Hall et al., 1995). NDSI is computed
via Eq. (1) with Rvis and Rswir corresponding to Landsat bands 2 and 5,
respectively. Pixels are classified in binary manner according to the fol-
lowing criteria:

so ¼ snow; NDSI ≥ 0:4
no snow; otherwise

�
ð6Þ

where so represents the classified state of the observed pixel. Dozier
(1989) suggests other criteria for shadowed areas and clouddiscrimina-
tion, but these are neglected here; we rely on (1) the NDSI to havemin-
imal influence of viewing geometry over complex terrain and (2) our
qualitative manual cloud cover selection criteria.

3.3. MODIS grid processing

We subset MODISMOD10A1 data (Riggs et al., 1995) over the study
region and re-project from its native Sinusoidal grid into a UTM coordi-
nate system using the MODIS Reprojection Tool (MRT) from the NASA
Land Processes Distributed Active Archive Center (LP-DAAC). For sim-
plicity, we remap the 500mMODIS fSCA product onto a 30 m resolution
grid that is co-registered with the SRTM DEM. It is on this geospatial
template that the binary snow-covered classification is assigned. We
use a nearest-neighbor scheme to register the MODIS fSCA grid to the
resolution and position of the DEM. The 30m resolution grids, which in-
clude the remapped MODIS fSCA, Landsat SCA, slope factor (fsl), and ele-
vation (z), are cropped to the MODIS grid boundaries, eliminating a
small number of pixels at the grid margins. Because the boundaries of
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the reprojected MODIS grid do not perfectly align with the boundaries
of the SRTM DEM and Landsatmultispectral images, there is an approx-
imate geolocation offset of 9.96m between the grids. It should be noted
that this offset is well below theMODIS geo-location uncertainty of ap-
proximately 50mat nadir (Wolfe&Nishihama, 2009). Results depicting
differences between MODIS fSCA and the fSCA at 500 m computed from
Landsat SCA show approximately zero mean and normally distributed
disparities, suggesting that the grid offset does not produce systematic
errors that would influence the calibration of the downscaling routine.

Although a MODIS snow cover grid is produced for each day, some
regions and days are frequently corrupted by cloud cover and poor sen-
sor viewing geometry. To combat this issue, temporal smoothing splines
can be employed to estimate snow cover fraction during periods with
data gaps (e.g., Dozier and Frew, 2009). In this study, we execute pre-
liminary downscaling on a MODIS fSCA image that temporally coincides
with 30mdata from a clear Landsat overpass (18March, 2010)which is
used for preliminary validation. Since both Landsat andMODIS obtained
cloud-free observations on this same date, no temporal smoothing is
necessary.

3.4. Downscaling routine

We achieve a standardized grid at each MODIS pixel by combining
the normalized insolation and elevation with a weighted average,
using a constant weight across the domain, to produce a “terrain score”:

Ts ¼ w � X1 þ 1−wð Þ � X2 ð7Þ

where thematrix Ts represents a standardized grid representing the ter-
rain score forwhich the constant weightsw and 1−w represent the re-
spective contributions from insolation (X1) and elevation (X2) to the
snow cover distribution. The weight w determines the relative impor-
tance of insolation and elevation. Since the range of solar insolation is
largest in winter, this parameter dominates the spatial distribution in
the early season, and by the end of spring when solar angles are large
and insolation is less spatially variable, elevation becomes more impor-
tant. Within each MODIS pixel, the empirical cumulative distribution
function (CDF) of the terrain score can be constructed. We then use
Fig. 2. Flow chart schematic outlining the fra
the retrieved MOD10A1 fSCA value, which varies from zero to one, to in-
vert the empirical CDF of Ts to determine a critical value of Ts that we
take as the threshold for the occurrence of snow cover within the
MODIS pixel. This critical value is designated as variable Tk. Specifically,
snow cover is assigned to pixels in Ts with values below Tk. The remain-
ing pixels, representing a fraction 1− fSCA within each MODIS pixel, are
assumed to be snow-free. This approach preserves the original snow
fraction observed by the individual MODIS pixel and thus preserves
fSCA at the basin-scale. The snow-mapping model is of the form:

sm ¼
snow;

Z Tk

0
F Tsð Þ

no snow;

Z Tm

Tk

F Tsð Þ

8>><
>>:

ð8Þ

where sm is the classified state of the 30 mmodeled pixel and Tm is the
maximum value occurring in Ts. The overall schematic approach is illus-
trated in Fig. 2. Numerically, this algorithm is straightforward and com-
putationally inexpensive since the only variable requiring solution isw.

This approach reflects our assumptions about the drivers of ablation
in a couple of important ways. First, by normalizing the elevation pixels
in reverse order, we assign greater values to pixels of lower elevation.
Within eachMODIS pixel boundary, the 30m pixels with the lowest el-
evations will tend to be associated with higher values of Ts, and will
therefore tend to be assigned a snow-free status before those pixels
with higher elevations. In contrast to the reverse-normalizing process
used with elevation, slope factors are normalized such that those pixels
with the highest values of fslwithin aMODIS pixel also have the highest
values of fnorm. Thus, those pixels with the highest values of fsl (prone to
relativelymore solar radiation)will correspondingly have higher values
of fnorm, which will tend to increase Ts. All else being equal, these pixels
will tend to be classified as snow-free more frequently. Finally, by com-
bining znorm and fnorm in an efficient linear combination model, the ap-
proach requires only one parameter (w) to fit (since Tk is defined by
MODIS fSCA andw). This parameter is informed by Landsat data and rep-
resents the relative contributions of potential solar radiation and eleva-
tion within each MODIS pixel to the persistence of snow cover. The
ctional snow cover downscaling routine.

image of Fig.�2


Fig. 3.Mean F-measure by parameterw for subset a for 13 temporally separated Landsat
scenes. For each date, a calibration optimum is chosen that corresponds to the maximum
value taken on by F.
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iterative calibration and validation methods are outlined in the next
section.

3.5. Parameter calibration

As described, the downscaling model requires only an input value
for the scalar weight w in Eq. (8) in addition to the znorm and fnorm
maps.We use an iterative approach to calibrate this parameter that op-
timizes the downscaled binary snow cover maps relative to the Landsat
binary snow cover predictions. To test the transferability of parameters
we use only region a in Fig. 1 to calibrate w.

During the calibration phase, the 500 m resolution fSCA is computed
directly from Landsat binary snow cover maps using an iterative,
moving-window approach. This eliminates the impact of potential er-
rors in the MODIS retrieval of fSCA from influencing the calibration of
the algorithm. The calibration approach iteratively moves a 500 m
square window over three different co-registered 30 m resolution
grids for region a: (1) Landsat SCA, (2) normalized elevation, and
(3) normalized potential insolation. For robustness, we move the win-
dow across every possible 500mwindow over the subset domain, rath-
er than just those windows falling on the MODIS grid footprint. Within
each window, the fractional snow cover is derived as the fraction of
snow-covered pixels predicted with the critical NDSI threshold,

f LandsatSCA ¼ ns

N
ð9Þ

where fSCA
Landsat is the fractional snow cover inferred from the Landsat

scene within the 500 m window, ns represents the number of pixels
where snow cover is observed, and N represents the total number of
pixels in the window. By default, the downscaling model performs per-
fectly when fSCA equals zero or one, regardless of the value of w. There-
fore, we analyze only those windows with fractional snow cover within
the range 0.1≤ fSCA

Landsat ≤ 0.9. This prevents misleading statistical analy-
sis of the model results.

For windows satisfying the given range, we iterate through candi-
date values, w, on [0,1] at intervals of 0.01. For each iteration, binary
classification performance metrics are used to construct a confusion
matrix. True positive (TP), false positive (FP), true negative (TN), and
false negative (FN) occurrences are obtained by comparing the Landsat
derived 30 m binary snow cover map to each of the realizations for dif-
ferent values of w on a pixel-by-pixel basis. Where the model predicts
snow when Landsat NDSI suggests no snow, a false positive (i.e. type I
error) occurs. Conversely, false negatives (type II errors) occur where
Landsat NDSI suggests snow cover but where the model predicts
snow-free conditions. The occurrence of these four possible outcomes
allows us to calculate precision (p) and recall (r). Precision equals the
proportion ofmodeled snow-covered pixels that are correctly identified
as snow,

p ¼ TP
TPþ FP

: ð10Þ

Recall equals the proportion of observed snow-covered pixels that
are correctly modeled (Powers, 2011),

r ¼ TP
TPþ FN

: ð11Þ

This analysis closely follows the approach of Rittger et al. (2012) in
which the accuracy ofMODIS snow cover products is evaluated. Accord-
ingly, the harmonic mean of p and r is the so-called F-measure,

F ¼ 2 � p � r
pþ r

ð12Þ

which provides a robust statistical balance for such a binary test. We
store the F-measure for each candidate w for every analyzed window.
Taking the mean of all windows for each value of w produces a vector
of F-measure as a function of w, from which the maximum F-measure
and associated w can be retrieved. We are thus calibrating the value of
w tomaximize the spatially averaged F-measure. This analysis is repeat-
ed for all available Landsat scenes used in calibration (Fig. 3).
3.6. Parameter validation

Since we drive the downscaling routine with fSCA information, the
outcome of the performance metrics are subject to particular con-
straints. For instance, when fSCA input to the downscaling model is
constrained to the value of fSCA inferred from Landsat, fSCALandsat, the confu-
sion matrix between observation and model is symmetric, meaning the
number of false positives and false negatives are equal. This occurs be-
cause every time a false positive arises, we miss an opportunity to cor-
rectly classify a snow-covered pixel, thus generating a false negative
elsewhere in the grid. This leads to equality in precision and recall and
it can be demonstrated that the F-measure simplifies to p or r when
the fSCA value input to the model and the fSCA value to which the
model is being calibrated are identical. Thus, the y-axis in Fig. 3 could
also be labeled as precision or recall since, during calibration, our
model always receives as input the value of fSCALandsat. Calibration could,
therefore, be simplified by simply maximizing precision. However, dur-
ing validation the map of fSCA values input to the downscaling model
comes from the MOD10A1 product and is not necessarily equal to the
map of fSCA thatwould have been derived from Landsat at the same spa-
tial scale. In validation, therefore, it is necessary to perform assessment
via the F-measure since p and r will often not be equal.

It is also important to determine a minimum acceptable value of the
F-measure that indicates the model is outperforming a random assign-
ment of binary snow cover for a given MOD10A1 fSCA. For any given
Landsat-derived binary snow cover map, a corresponding map of ran-
domly assigned snow cover with identical fSCA will produce an F-
measure that is on the order of the fSCA value. Therefore, for a given
fSCA value, an F-measure for the downscaling model that is outside the
range of variability of the corresponding F-measures of an ensemble of
randomly produced SCA within a MODIS pixel would indicate that the
model is outperforming a random assignment of SCA within the pixel.
We estimate the range of variability through a Monte Carlo simulation
for a range of fSCA possibilities from 0.1 to 0.9. For each possible fSCA,
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we randomly produce a synthetic true binary snow covermap. For each
synthetic true map, we generate an ensemble of 10,000 random binary
snow cover maps having an fSCA value that is within a fixed percentage,
δ, of the snow cover fraction of the synthetic truth. This approach allows
for discrepancies between the retrieved fSCA (i.e., that which
would be input to the downscaling model) and the true binary snow
cover (i.e., that which would be inferred from Landsat). We calculate
the F-measure for all random snow cover maps and every fSCA value.
For a given fSCA, we compute the expected value of F and its variance, de-
noted μFrandom and σFrandom, respectively. The variability in F-measure
tends to decrease as fSCA increases because pixels randomly assigned
as snow cover are more likely to be correct than at lower values of
fSCA. F-measure ensembles tend to be distributed normally across each
value of fSCA with a variance that decreases with increasing fSCA.

4. Results

4.1. Calibration results

To obtain a calibrated parameter value, w, used in the downscaling
model, we examine the performance of the F-measure across snow
cover grids for 13 different Landsat scenes in the manner described
above. A vector of F-measure statistics is generated for each candidate
w and 500 m window. The mean F-measure across all 500 m windows
and for each candidate w is computed. Note that, as described in
Section 3.6, the F-measure is identical to precision and recall in
this characteristic case. The w value that maximizes the magnitude of
F (p or r) is chosen as the optimum weight parameter for each Landsat
scene.

For 13 different dates of Landsat acquisition, the calibrated parame-
terw varies within a relatively narrow range from 0.83 to 0.94. The dis-
tribution of optimal w values has a mean, wμ, of 0.9069 and standard
deviation, wσ, of 0.0364. The maximum, domain-averaged F-measure
for all calibrated Landsat scenes ranges from 0.5403 on 15 May 2008
to 0.8163 on 16 February 2002. The fSCA across thewhole calibration do-
main within the calibration scenes ranges from less than 1% on 27 April
2007 to approximately 77% on 16 February 2002. Fig. 4 depicts these
resulting parameter optima by date, along with their corresponding
values of F and domain-wide fSCA values. Note that the F-measure max-
ima tend to be highest when domain snow cover fraction is also rela-
tively high.

Parameterw represents theweight assigned to the normalized slope
factor fnorm while its complement, (1 − w), is that assigned to normal-
ized elevation znorm. Thus, the calibration seems to suggest that spatial
variability in insolation is the dominant predictor variable used because
the weights appear to be relatively consistent over time (Fig. 4). The
weights remain constant because the normalized insolation includes
Fig. 4. Results from calibration phase. Parameter optima (yellow squares) are chosen as the corre
shown as blue triangles. Snow cover fractions for thewhole domain are plotted as red circles. N
Also note that the y-axis is intentionally un-labeled as all three plotted datasets are unitless an
legend, the reader is referred to the web version of this article.)
the physics describing how insolation variability increases as the spring
progresses. If insolation is not normalized in this way, the optimal
weight will decrease during the season as insolation becomes less vari-
able and the spatial distribution of fSCA becomes more controlled, pre-
sumably, by elevation. By normalizing to the maximum relative
insolation over the season, we are including this effect in the physics
of the model and allowing the approach to use only one calibrated pa-
rameter. Otherwise one or more additional empirical parameters
would be necessary to account for this temporal change. It should be re-
iterated, however, that values for fnorm varywith Julian date and are nor-
malized to seasonal maxima whereas znormvalues are static and
normalized to each grid window. As a result, insolation (as captured
by fnorm) exhibits a larger dynamic range in the winter and early spring,
and dominates where snow-covered pixels are assigned in the
downscaling routine. However, as the season progresses elevation (as
captured by znorm) becomes increasingly important in predicting snow
cover.

4.2. Validation results

Preliminary validation is performed using data from the MOD10A1
Version 005 fSCA product (Hall, Riggs, & Salomonson, 2006) as input to
the downscalingmodel and Landsat SCA to facilitate statistical analyses.
We perform validation over regions b and c in the same Landsat scene
(path/row 41/30) used for calibration (Fig. 1). The MOD10A1 and
Landsat observations are acquired for 18 March 2010, a date not used
in model calibration. This date is selected because both Landsat and
Terra satellites passed over the region coincidentally during this date,
obtaining a clear view of the domain. We operate the validation in
similar fashion to the calibration procedures. Every MODIS pixel is
downscaled to 30 m spacing, following the methods described in
Section 3.4. We use the mean of calibration w values, wμ, to generate
downscaled estimates. For all MODIS pixels, we select for validation
only those which satisfy (0.1 ≤ fSCA

Landsat ≤ 0.9) and (0.1 ≤ fSCA
MODIS ≤ 0.9).

These criteria are used for two reasons:

1) By default, the model performs quite well when fSCA is near zero or
one so we choose to disregard the performance at these ranges.

2) We are interested in examining the results when both MOD10A1
and Landsat have an fSCA not near 0 or 1 at the 500 m scale, since
we are not evaluating the performance of MOD10A1, but rather
theperformance of thedownscalingmodelwhen both products sug-
gest the evidence of partial snow cover.

At windows compliant with the above criteria, the difference in fSCA
between the two products, ΔfSCA, is computed,

Δ f SCA ¼ f LandsatSCA − f MODIS
SCA ð13Þ
spondingweightwhichmaximizes the average F-measure for eachdate. The Fmaxima are
ote that the x-axis dates are relative, meaning they are not all from the same snow season.
d fall on the same interval [0,1]. (For interpretation of the references to color in this figure
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Fig. 5. Relative density histograms displaying the differences in snow cover fraction between Landsat and MODIS over the two validation subsets on 18 March 2010. Subsets b and c are
shown at left and right, respectively. Note that these differences do not include occurrences where both satellites observe 0% or 100% snow cover.
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Fig. 5 illustrates the histogram of fSCA disparity between MODIS and
Landsat across each validation subset.

We further restrict validation to those MODIS pixels satisfying
(|ΔfSCA| ≤ 0.1) to examine those observations where MODIS agrees
with the observed Landsat snow fraction to within 10%. We choose
this tolerance value to coincide with the choice of δ in Section 3.6. In
subset regions b and c, 34.98% and 36.71% of windows fall, respectively,
within this tolerance. Note that these percentages exclude occurrences
where MODIS and Landsat observed completely snow-free or snow-
covered conditions. We then compare the F-measures calculated be-
tween downscaled MODIS and observed Landsat binary snow cover
with the scores computed via random model generation from
Fig. 6. Top row:Modeled F-measure (downscalingmodel versus Landsat observation) as a funct
in 10% (|ΔfSCA| b 0.1). Mean F-measure from random model ensembles (δ= 0.1) is also plotted
respectively. Bottom row: Fraction of F-measures (from MODIS) that exceed random model e
random variation.
Section 3.6. If, for a given fSCA, the corresponding F-measure within
that MODIS pixel exceeds μFrandom + σFrandom, we suggest that the
model is performing agreeably relative to a random assignment of
snow cover locations. Fig. 6 depicts the results of validation, displaying
downscalingmodel F-measure for given values of fSCA. Sincewe set con-
straints on ΔfSCA to be within 10%, we plot the measures against the
snow fractions for both the downscaled MOD10A1 fSCA and Landsat
fSCA computed over the MOD10A1 footprint. For a point plotting above
μFrandom + σFrandom, we are approximately 68% confident that the
model is performing better than a random one. Similarly, for points
plotting above μFrandom + 2 ⋅ σFrandom, we are 95% confident the
model is outperforming a random one. Table 2 summarizes the fraction
ion of fSCA (MODIS and Landsat) forwindowswhereMODIS and Landsat fSCA agree towith-
against fSCA with error bars of −+2σ. Validation subset b and c are shown at left and right,

nsemble ranges within fSCA bins. Exceedance fractions are shown for 1σ and 2 σ levels of
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Table 2
Fraction of downscaled windows (|ΔfSCA| b 0.1) in each subset region with F-measures
exceeding the normal range of variability in those of random model ensembles
(δ = 0.1). Exceedance is shown for Landsat and MODIS.

fSCA Variability Exceedance fraction

Platform Range Subset b Subset c

Landsat μFrandom+σFrandom 0.8122 0.8058
μFrandom + 2 ⋅ σFrandom 0.7017 0.6325

MODIS μFrandom+σFrandom 0.7776 0.8320
μFrandom + 2 ⋅ σFrandom 0.6823 0.6719

Table 3
Fraction of downscaled windows with ideal snow fraction (ΔfSCA = 0) in each subset re-
gionwith F-measures exceeding the normal range of variability in those of randommodel
ensembles (δ = 0.0).

Standard Exceedance fraction

Deviations Subset b Subset c

1σ 0.8491 0.9011
2σ 0.8101 0.8723
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of downscaled scenes that satisfy these criteria. To demonstrate statisti-
cal significance of the modeled F-measures, we perform a Wilcoxon
rank-sum test on the values obtained from the downscaling model ver-
sus those from the random model assignments. This test is chosen be-
cause 1) we are not able to assume normal distributions for the
modeled F-measures and 2) the distributions of modeled and random
scores are not necessarily the same size. The rank-sum test is performed
for each fSCA bin indicated by Fig. 6 for a total of ten tests. For all but one
bin, the test indicates that the F-measures from the downscaling model
are statistically higher than random ones at the p = 0.01 significance
level. For the 10–20% fSCA bin in region c, there is simply not enough
Fig. 7.Modeled F-measure as a function of “ideal” fSCA for synthetic windowswhereMODIS is ad
plotted against fSCA with error bars of −+2σ. Validation subsets b and c are shown at left and rig
data to perform a meaningful test of the hypothesis that the modeled
F-measures are high and significant.

From a qualitative standpoint, the model more accurately down-
scales in subset validation region b. However, it is possible that this is
a result of less agreement between Landsat and MODIS over region c
as depicted by the sheer fewer number of such points in this region
(Fig. 6c). Many occurrences of fSCA between 0.8 and 0.9 are observed
in both subset regions and, on the whole, most downscaling model F-
measures plot above the μFrandom lines in Fig. 6, indicating that the
model is, at the very least,moving snow-covered pixels in the correct di-
rection. However, there are points, especially at lower snow cover frac-
tions, where the model performance exceeds randomness, yet still
suffers a qualitatively low F-measure, meaning there are many type I
and/or type II errors still occurring, albeit less than if the model were
not tuned to terrain indices. Overall, the mean F-measure is higher
over subset region c than for region b. However, in region c fSCA varies
mostly between 0.65 and 0.90, where F-measures must be correspond-
ingly high to outperform a random assignment of snow cover.

4.3. Ideal simulation results

We also execute a validation simulation under circumstances of
“ideal” fractional snow cover observations. That is, MODIS observations
of fSCA are substituted for the corresponding fSCA values derived from
Landsat over the MODIS footprint. In this fashion, the model is given
maximum opportunity to downscale fSCA windows containing the ob-
served, “true” amount of snow-covered area since ΔfSCA = 0 every-
where. We examine the results of the downscaling model using the
samemethods outlined in Section 4.2. An updated ensemble of random
models is generated with δ= 0 to represent perfect snow cover obser-
vations. From this, we produce a new distribution of F-measures that is
narrower than one resulting from a non-zero choice for δ. Table 3 pro-
vides the fraction of windows satisfying the criteria for outperforming
justed to equal Landsat. Mean F-measure from randommodel ensembles (δ=0.0) is also
ht, respectively.
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Table 4
Mean F-measures across regions b and cwhen downscalingMODIS and ideal (Landsat ag-
gregate) fSCA grids.

fSCA Mean F-measure (Fμ)

Platform Subset b Subset c

MODIS 0.7313 0.8372
Ideal 0.7232 0.8182

Table 5
K-fold cross-validation results from subset region a. Snow fractions are given for thewhole
domain and the fractions of F-measures exceeding the normal range of variability from
random model assignments are shown.

Date fSCA Exceedance fractions

1σ 2σ

02/03/2000 58.3 0.8101 0.7597
02/19/2000 44.5 0.7876 0.7375
03/01/2001 64.7 0.9823 0.9764
04/18/2001 10.4 0.9558 0.9381
05/04/2001 2.3 0.9617 0.9469
02/16/2002 73.3 0.9646 0.9587
03/04/2002 61.3 0.9558 0.9440
04/08/2003 20.4 0.9381 0.9056
05/10/2006 3.0 0.9292 0.9027
04/27/2007 1.4 0.9322 0.9056
03/12/2008 3.4 0.9410 0.9086
05/15/2008 3.4 0.9292 0.8997
02/01/2011 52.5 0.9263 0.9027
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random snow cover assignments outlined in the previous section. Fig. 7
depicts qualitative results. In these ideal circumstances, the downscal-
ing model appears to perform better across subset region c than b. It
should be noted that region c has many windows with Landsat-
observed fSCA between 0.9 and 1.0 (n= 10,115) in comparison to region
b (n= 5,111). Thus, thesewould be excluded from the evaluation lead-
ing to lesswindows for validation in region c (n= 2,992) than in region
b (n = 3,333). Of the windows in the evaluation range, region c has a
higher mean F-measure across its domain than b. The mean F values
for MODIS and ideal (Landsat) snow cover fraction evaluation are
given in Table 4.

Wilcoxon rank-sum tests are also performed for the ideal simula-
tions. For all fSCA bins in regions b and c, the modeled F-measures are
significantly higher than those obtained from random ensemble assign-
ments (p = 0.01).

A K-fold cross-validation routine is also performed across subset re-
gion a for each of the Landsat observation dates (K= 13) used in initial
model calibration. For each leave-one-out iteration, the mean of the re-
maining 12 optimized calibration parameters (w) is used to drive the
downscaling model along with the ideal synthesized snow fraction
values of fSCALandsat. Downscaled results are compared with the original
Landsat SCA observation for each date and the F-measure exceedance
fractions are calculated. Table 5 depicts the cross-validation performance
results. Fig. 8 provides a visual example of downscaled results at a small
spatial scale to qualitatively depict the model's skill at predicting snow
cover at the hillslope scale when accurate fSCA data are available (i.e.
MODIS and Landsat snow fractions are similar). At a larger glance,
Fig. 9 illustrates example downscaled results for the entire subset region
a.
5. Discussion

The developed downscalingmodel performswith significant skill for
all subsets, requiring calibration of only one empirical parameter. Thus,
we produce snow cover maps at the temporal resolution of MODIS and
the spatial resolution of Landsat, a tool that is not currently available to
hydrologic modelers. However, locations exist in F-measure plots with-
in, or below, a range of F-measures that can be achieved through purely
random assignment of snow-covered locations. Even those downscaled
500 m pixels that exceed μFrandom + 2 ⋅ σFrandom do not always reveal a
dramatic improvement from random. The fraction of pixels with F-
measures exceeding this range was, however, promising, especially
across subset region c. This region also exhibited the highest mean F-
measure, performing even better with input MOD10A1 fSCA than with
the ideal snow fraction.

Ancillary information not currently included in the downscaling
model may provide a source of improvement to the downscaling ap-
proach. Further analysis is necessary in order to gain insight into phys-
iographic characteristics of terrain within MODIS windows where the
model is failing (or succeeding) consistently. For example, since we do
not account for a forest canopy, we may be assigning snow-free states
to areas where a forest canopy impedes a great deal of insolation and
obscures existing snow cover. Forest canopy is also a potential reason
Fig. 8.Hillslope-scale downscaling visualization for two arbitrary subsets within greater subset
shows the Landsat-derived snow cover observation, downscaled Landsat aggregate fSCA, down
for the fSCA offset between MODIS and Landsat. For example, Raleigh
et al. (2013) found that fSCA derived from the MODSCAG model consis-
tently under-predicted the observed snow fraction (quantified via
temperature sensor networks) in a study plot with high canopy fraction
(i.e. 79%), even when the remotely sensed fSCA value was statistically
corrected for the canopy cover.

Another parameter worthy of consideration is wind redistribution.
With knowledge of time-series wind vectors or seasonal tendencies,
terrain-based indices can be generated in order to predict areas prone
to drifting and general redistribution during accumulation and settling
of snow fall. Winstral, Elder, and Davis (2002) showed that a snow
depth regression tree model based on elevation, solar radiation, and
slope was substantially improved by the addition of a wind redistribu-
tion predictor variable. Using this parameter with a physically based,
distributed snow model, improvements were made to the simulated
distribution of snow cover, snow drifts and melt within RCEW
(Winstral & Marks, 2002). RCEW is located within validation subset re-
gion b, which will facilitate future efforts to include such information
into the downscaling model. In addition, in RCEW prevailing winds
come from the southwest and resultant drifts tend to form on north fac-
ing slopes. Therefore, ourmodel may be getting the right answer for the
wrong reason, since the insolation component of themodel causes sim-
ilar spatial patterns of snow cover (Winstral & Marks, 2002). Anderson
et al. (2014), however, demonstrated that in the DCEW (subregion a)
differential ablation throughout the snow-covered season has stronger
impact on the spatial variability of SWE than does wind redistribution.

Future work may also employ spectral mixture analysis snow cover
products (Painter et al., 2009; Rosenthal & Dozier, 1996) in order to per-
form similar experiments using products that have been suggested to
have a higher accuracy (particularly during the ablation phase with
which we are most concerned) in reproducing the snow cover distribu-
tion. In applying the model developed here to satellite retrievals using
spectral mixing models, care must be taken to ensure that the 30 m res-
olution binary snow cover map is produced using techniques similar to
those used to estimate the 500 m resolution fSCA (i.e. Painter et al.,
2003).

The linear method used here to combine the physiographic index
variables (insolation and elevation) is a relatively simplistic way to
combine the two effects captured by the predictor variables, making a
speculative assumption that the variables' relative contributions to
snow cover are dependent on a single-parameter, linear model. It is
worth noting that more complex approaches exist for multivariate
data characterization. A method to be explored in future work is the
use of copulas for blending multiple variable indices. Copulas are
region a for 18March 2010. Each subset represents a 1500mwindow (9MODIS cells) and
scaled MODIS fSCA and performance metrics for each 1500 m window.
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Fig. 9. Downscaling visualization over region a (18March 2010) displaying (a) Landsat observed binary snow cover, (b) “ideal” fSCA as 500m aggregate from Landsat, (c) downscaled fSCA
from previous, (d) MOD10A1 500 m fSCA, (e) downscaled fSCA from previous, and (f) absolute difference grid between Landsat and MODIS, normalized to unity.
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efficient tools used to describe the dependence structure of joint multi-
variate random variable distributions through examination of the un-
derlying univariate marginal distributions (Schwarzlander, 2011). This
method is frequently applied in financial risk analysis and has been
used increasingly in the field of hydrology in the past several years
(Schölzel & Friederichs, 2008). Such an approach may offer additional
insight into the relationship between physiographic parameters and
snow cover.
6. Conclusion

We describe here a model to downscale fractional snow-covered
area (fSCA) data from MODIS to a higher-resolution, spatially explicit
binary grid based on physiographic indices derived primarily from
digital elevation data. Parameterizations for elevation and insolation
are combined to yield a terrain score that is used to assign binary
snow cover on a 30 m grid with information about fractional snow
cover on a 500 m grid. Using Landsat binary snow cover maps de-
rived using an NDSI threshold, the model is calibrated to 13 Landsat
binary snow cover scenes for one domain subset and validated
against two independent domain subsets (each in the same scene,
approximately 100 km away) for a date not used in calibration.
Cross-validation is also performed on each of the 13 scenes across
the original calibration subset region. Calibration results depict a
general stability in weight parameters over varying times of the
snow season and degrees of snow cover. Results from validation
show that model's skill, as assessed via the F-measure, tends to ex-
ceed that of ensembles of randomly generated snow cover maps
over a relatively large range of fSCA. The statistical significance of
these findings is confirmed via Wilcoxon rank-sum testing on the
F-measures in binned ranges of fSCA. Perhaps unsurprisingly, the
model performs best in the region over which it is calibrated (as sug-
gested by the cross-validation results) though it exhibits promising
results in the independent validation regions as well. The developed
model could assist hydrologic modeling by providing daily, high-
resolution constraints on the distribution of snow in mountainous
areas.
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