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pplication of time-lapse ERT imaging to watershed characterization
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ABSTRACT

Time-lapse electrical resistivity tomography �ERT� has many
practical applications to the study of subsurface properties and
processes. When inverting time-lapse ERT data, it is useful to
proceed beyond straightforward inversion of data differences
and take advantage of the time-lapse nature of the data. We assess
various approaches for inverting and interpreting time-lapse
ERT data and determine that two approaches work well. The first
approach is model subtraction after separate inversion of the data
from two time periods, and the second approach is to use the in-
verted model from a base data set as the reference model or prior
information for subsequent time periods. We prefer this second
approach. Data inversion methodology should be considered
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hen designing data acquisition; i.e., to utilize the second ap-
roach, it is important to collect one or more data sets for which
he bulk of the subsurface is in a background or relatively unper-
urbed state. A third and commonly used approach to time-lapse
nversion, inverting the difference between two data sets, localiz-
s the regions of the model in which change has occurred; how-
ver, varying noise levels between the two data sets can be prob-
ematic. To further assess the various time-lapse inversion ap-
roaches, we acquired field data from a catchment within the Dry
reek Experimental Watershed near Boise, Idaho, U.S.A. We
ombined the complimentary information from individual static
RT inversions, time-lapse ERT images, and available hydrolog-

c data in a robust interpretation scheme to aid in quantifying sea-
onal variations in subsurface moisture content.
INTRODUCTION

Advances in geophysical instrumentation in the past decade have
ade it possible to efficiently acquire large data sets in a fraction of

he time compared to collecting the same set of measurements using
lder equipment. Modernized instrumentation also means that, in
any cases, repeatability of measurements has improved, making

ime-lapse geophysical surveys much more practical by improving
he signal-to-noise ratio.

The advantage of time-lapse measurements versus a single, static
urvey is that they provide a means of imaging not only subsurface
roperties, but also dynamic changes in these properties, which can
n turn provide insight into ongoing subsurface processes. Time-
apse geophysical measurements have been shown to be successful
n monitoring and understanding physical processes in the subsur-
ace, e.g. �Ramirez et al., 1993, 1995; Lumley, 2001; Tsourlos et al.,
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In a general sense, time-lapse methodologies can be utilized to de-
ermine the rate at which a process is occurring, define the volume of
ubsurface region affected by a particular process, and understand
he complex interactions between various subsurface processes.
ime-lapse is especially important for near-surface studies since the
edium is much more dynamic due to the proximity of the air-earth

nterface. This is evidenced by increase in time-lapse applications
or near-surface geophysical problems �Day-Lewis et al., 2002,
003; Singha and Gorelick, 2005�.

Time-lapse geophysical measurements can help to enhance our
nderstanding of a particular site but can also make designing our
emporal and spatial sampling schemes more challenging. Ultimate-
y, the rate at which a process of interest is occurring determines how
losely spaced our data collection must occur temporally. Day-
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G8 Miller et al.
ewis et al. �2002, 2003� demonstrate the importance of accounting
or the finite time required for data collection �the data may be
hanging faster than we are able to complete a subset of measure-
ents� when inverting time-lapse crosswell radar data from a tracer

est.
On the other end of the temporal spectrum are long-term studies

here the properties of interest vary over diurnal, seasonal, or even
onger time scales. In this type of investigation, there is adequate
ime to collect the data with little concern as to short-timescale varia-
ions in the subsurface. The methodologies and data examples pre-
ented herein focus on studies pertaining to the latter types of pro-
esses.

Electrical resistance tomography �ERT� data are useful in imag-
ng properties and processes associated with groundwater and unsat-
rated zone systems �Slater et al., 1997; Zhou et al., 2001; Binley et
l., 2002; Müller et al., 2003; Mohnke et al., 2006; Oldenborger et
l., 2007a, b; Descloitres et al., 2007�. The ERT data are sensitive to
he subsurface geoelectrical structure, which is in turn sensitive to
ubsurface variations in water saturation and pore water salinity �Ar-
hie, 1942; Mualem and Friedman, 1991; Henry, 1997; Ewing and
unt, 2006�. This makes ERT particularly useful for characterizing

nfiltration into bedrock where conventional methods of soil mois-
ure accounting fail.

Geophysical methods have been widely used in groundwater in-
estigations �Fitterman and Stewart, 1986; McNeill, 1990; Hubbard
t al., 2001� and can provide information over large areas at a rela-
ively inexpensive cost compared to other methods �e.g. borehole
rilling and trenching�. Surface ERT is minimally invasive and thus
oes not disturb ongoing hydrological processes at the site. Previous
tudies have successfully used electromagnetic and electrical meth-
ds within aquifer regions composed of fractured media to provide
aluable information for hydrogeological and environmental studies
Lane et al., 1995; Hautot et al., 2002; Sharma and Baranwal, 2005;
oadu et al., 2005; Porsani et al., 2005; Hubbard and Rubin, 2006�.
Bedrock infiltration is a key component of the water balance of
ountain watersheds. However, it is a challenging process to mea-

ure at watershed scales and is typically calculated as a water bal-
nce residual. The primary difficulty arises from the non-Darcian
ow in fractures masked by a soil mantle. Time-lapse ERT can be
sed to characterize the bedrock fracture networks by monitoring the
hanges in water saturation.

In the field data example presented in this paper, the fieldwork was
imed such that we were able to collect a base data set prior to onset
f winter rain and snowfall. For these background data, we assume
hat the in situ water saturation was at or near its annual low value.

e then collected two data sets during the wet winter/spring time pe-
iod to capture the changes in the electrical structure induced by the
ncrease in water saturation. The final data set was collected late in
he summer when the hydrologic system had returned to a dry state.

When collecting time-lapse geophysical data, it is important to
ave knowledge of the current state of the study site so that proper in-
erpretation of the results is possible. When possible, data collection
hould be timed to capture at least one entire cycle of the hydrologi-
al process of interest. Data acquired over two or more entire cycles
ay prove useful in assessing longer-term stability of the hydrologi-

al process. With this view we acquired another survey in September
007 to validate the hydrologic cycle stability. In addition to the ERT
ata collected specifically for this study, we also present soil mois-
ure content data collected concurrently for other studies that proved
seful when interpreting the results.
We present three approaches for inverting time-lapse geophysical
ata:

� Model subtraction after separate inversion of the data from two
time periods

� Use of an inverted model from a base data set as the reference
model for subsequent time periods

� Inversion of the differences between two data sets

Using a combination of synthetic and field ERT data, we demon-
trate that the first two approaches work well in most instances. The
econd approach is shown to be the preferred method. The third ap-
roach localizes the regions of the model in which change has oc-
urred but varying noise levels between the two data sets can be
roblematic because of repeatability issues.

The field data example comes from a small, semiarid catchment in
he Dry Creek Experimental Watershed �DCEW� near Boise, Idaho
.S.A. This study area presented an opportunity to compare and in-

erpret geophysical results in conjunction with long-term hydrologi-
al and geological data collected at the site. We focus primarily on
oil moisture content data from the site; but local precipitation, hy-
rogeochemical, hydraulic, and soil composition estimates also aid-
d in the ERT data interpretations. Combining the information from
hese previous/ongoing studies with the individual ERT inversions
nd the time-lapse images, we were able to determine possible frac-
ure locations and identify pathways of bedrock infiltration at the
tudy site.

METHODS

lectrical resistivity tomography: Acquisition
nd processing

ERT measurements are highly sensitive to saturated pore spaces.
ith the exception of conductive rocks such as ore bodies, most rock

ypes in the near surface under dry conditions are typically resistive,
herefore propagation of electrical current in the shallow subsurface
s primarily achieved via movement of ions within pore water. As-
uming that the pore water preferentially flows through the bedrock
racture networks, electrical potentials will be sensitive to and help
ocate fracture zones within the bedrock.

The instrument used for ERT data acquisition was the IRIS Syscal
ro Switch 72. This instrument has been designed for high produc-

ivity resistivity and IP measurements with a precision of 0.2% and
hreshold voltage of 1 �V. The system features an internal switch-
ng board for 72 electrodes and an internal 250 W power source. The
ystem is designed to make resistivity measurements at selected in-
ection electrodes and potential measuring electrodes predefined by
he user. Input specifications include electrode array type, combina-
ions of electrode spacing, injection current strength, and the number
f measurements to be stacked.

When data acquisition begins, the instrument checks the elec-
rodes for contact and then takes measurements according to the user
nput acquisition sequence. For example, in a dipole-dipole survey
uch as was employed in this paper, the sequence might specify the
rst two electrodes as the first current injection pair. Voltages are

hen recorded for the remaining electrode pairs for a number of pre-
efined combinations. Because the instrument has 10 recording
hannels, it is efficient to collect 10 potential measurements for each
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Time-lapse ERT G9
urrent injection pair. The next two electrodes inline then become
he current injection pair and the process is repeated until the injec-
ion pair reaches the far end of the survey line.

Typically, ERT data quality is improved by stacking several mea-
urements for each quadripole �transmitter-receiver pair�. A data re-
eatability threshold �e.g., 3%–5% standard deviation� can then be
sed to remove noisy measurements from the data.Alternatively, the
oisier data may be retained and assigned higher standard deviations
rior to inversion. If reciprocal measurements are collected, these
an also be used to eliminate noisy data or for error assignment. The
lectrical potentials, input current, and electrode geometry are then
sed to compute apparent resistivities for input to an inversion algo-
ithm.

nversion of ERT data

Construction of subsurface images from ERT data is a nonlinear
nverse problem with the goal of recovering the model �electrical
onductivities� that reproduces the observed data �electrical poten-
ials�. The observed data are assumed to be contaminated with noise;
herefore an exact fit of the model to the data would result in extrane-
us structure. Typically, some level of noise is assumed for each da-
um, and then a model objective function that penalizes the small-
ess and flatness of the model is minimized to reproduce data only to
ithin an amount that is justified by the amount of noise in the data.
he amount of structure in the final model is determined by how well

he observed data are reproduced �Oldenburg and Li, 1994�.
An important consideration of any geophysical imaging applica-

ion is to determine which features within the model are required to
t the data �Miller and Routh, 2007�. To determine this, and subse-
uently the depth of investigation, one can invert the same data set
sing two different reference �background� models. The model re-
ions that are not constrained by the data will revert back to the refer-
nce model �Oldenburg and Li, 1999�.

For all of the examples in this paper, inverse modeling was carried
ut using DCIP2D software �developed by the University of British
olumbia�, which uses a 2D finite volume method to model the DC
otentials. The inversion recovers ln�� �, allowing for a large range
f conductivities as well as imposing positivity. The inverse problem
an be stated as

minimize � m � �s�Ws�m � m0��2 � �x�Wx�m � m0��2

� �z�Wz�m � m0��2, �1�

subject to � d � �Wd�dpred � dobs��2 � �
d
*. �2�

his inverse problem is solved by minimizing,

� �m,m0� � � �Wm�m � m0��2 � �Wd�dpred � dobs��2.

�3�

In the preceding equations, m is the model sought, m0 is the refer-
nce model, dobs is the observed data, dpred is the predicted data, and

d
* is the tolerance for the data misfit, chosen, e.g., based on a � 2 mis-
t criterion. The three terms in the model objective function �� m,
quation 1� allow us to apply smallness and smoothness constraints
o the solution, while the data objective function �� d, equation 2� en-
ures that we honor the data observations while accounting for noise
n the data, and � �from equation 3� is the regularization parameter
hat defines the trade-off between fitting the data and honoring the a
riori constraints.

The data weighting matrix Wd is diagonal and we chose to use the
eciprocals of the data standard deviations as the weights. Ws is diag-
nal, and Wx and Wz are finite-difference operators. The � parame-
ers are used to control the relative contribution of smallest and flat-
est model constraints. Note that � �Wm�m � m0��2 in equation 3 is a
horthand notation for the right-hand side of equation 1. For addi-
ional details regarding the inversion, see Oldenburg and Li �1994�.

oise considerations

Some of the major sources of noise in a DC resistivity experiment
re high contact resistance, measurement errors, and background/
ultural noise �Slater et al., 2000�. These noise sources can never be
liminated entirely but there are useful techniques available for min-
mizing and/or quantifying the data noise. Stacking repeated mea-
urements is useful for minimizing random errors. Reciprocal mea-
urements �swapping the source and receiver electrode pair� can pro-
ide a measure of data precision �LaBrecque et al., 1996�.

Stacking and reciprocal measurements are both useful in estimat-
ng standard deviations and/or culling outliers from the data. Under-
tanding the noise in the data observations is crucial for data inver-
ion, and ultimately determines how well we can resolve the subsur-
ace structure. If noise estimates are too low, artifacts are introduced
nto the inverted images, while conversely, if noise estimates are too
igh, image resolution is degraded �LaBrecque et al., 1996�.

A crucial aspect of any time-lapse problem is the ability to image
he changes when repeatability of the data between surveys is in
uestion. LaBrecque et al. �1996� observed that permanently in-
talled electrodes are more electrically noisy when first installed, but
mprove over time. The higher noise levels in the initial data sets ver-
us later data sets leads to differences in image resolution from one
urvey to the next. Much effort goes into making the base and subse-
uent data sets compatible so that data can be subtracted or normal-
zed, however in practice this is often difficult to achieve. Olden-
orger et al. �2005� showed how positioning errors in the electrodes
an manifest artifacts in the inverted images.

Thus, similar to the problems with permanent electrode installa-
ion, mispositioning of electrodes can cause difficulties when work-
ng with data differences explicitly. Daily and Owen �1991� suggest
nverting a normalized data set given by the following equation

dn �
dt

d0
dh, �4�

here dn is the normalized data, d0 is the base data, dt is the time-
apse data, and dh is the data that would be observed if the subsurface
ere a homogeneous half space.
This normalization provides a unique way to view the data chang-

s, however, it involves a nonlinear transformation of the data and
onsequently, the data noise needs to be estimated due to this trans-
ormation. Instead, we advocate more straightforward linear data
perations. In the next section, we discuss several ways to invert for
ime-lapse changes. We show that compatibility of the data sets,
hile desirable, is not always necessary to image the time-lapse

hanges.
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SYNTHETIC DATA EXAMPLE

Using a synthetic example, we now examine how one can formu-
ate the time-lapse inversion problem to image changes in subsur-
ace properties. The synthetic example was constructed as follows:

We began with field data and inverted for a model, using the in-
version procedure described in the next section. This model �Fig-
ure 1a� is considered the base model for the synthetic examples.
The base model produced in this manner provides a realistic syn-
thetic that is closer to the real data example than choosing an arbi-
trary synthetic model which is a common practice in geophysical
data inversion.
We projected this model onto a finer mesh to forward model the
data. In the example presented in this paper the cell size for the
forward mesh is half of the inversion mesh.
Using this base model, we generated synthetic data and then add-
ed random noise to the data. These data are considered the base
data �Figure 2a�.

a)

b)

c)

igure 1. Synthetic example for the time-lapse inversion of resistivi-
y data. �a� Base electrical resistivity model obtained from inversion.
b� Inverted resistivity model from time-lapse data with best fit half-
pace as reference model. �c� Inverted resistivity time-lapse model
ith the base model in �a� as reference model.

igure 2. The base and time-lapse synthetic apparent-resistivity data
ontaminated with Gaussian noise with standard deviation of 5%
lus a base-level error of 1 mV.
Next we increased the electrical conductivity by a factor of two in
a localized region of the base model where changes are expected
to occur to generate a time-lapse model. The regions where elec-
trical conductivity was increased are shown in Figure 3a.
We generated synthetic data on the finer forward mesh with the
time-lapse model and then added random noise to obtain the
time-lapse data �Figure 2b�.

a)

b)

c)

d)

e)

f)

g)

h)

i)

igure 3. Synthetic example showing the region in which time-lapse
hange has occurred using various approaches to time-lapse inver-
ion. �a� True model showing the changes. Left column, �b-e� base
nd monitor data contaminated with 5% noise. Right column, �f-i�
ase data has 15% noise, and monitor data has 5% noise. �b and f�
ime-lapse change using model subtraction. �c and g� Time-lapse
hange when the base model is used as the reference model for inver-
ion of the time-lapse data. �d and h� Percent time-lapse change from
irect inversion of the data differences �equation 6�, with appropri-
te noise assumptions. �e and i� Percent time-lapse change from di-
ect inversion of the data differences with lower noise assumptions
o that the amplitude recovery can be enhanced.
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Time-lapse ERT G11
This approach of generating a synthetic example allows us to in-
orporate realistic features into the true model and yet provides us
ith the flexibility to examine various features of time-lapse inver-

ion with known model changes. To investigate the different time-
apse inversion approaches we consider two synthetic examples. In
he first example, the base data has the same level of noise compared
o the monitor data. We contaminate the base and the monitor data
ith Gaussian noise with a standard deviation of 5% plus a constant

rror floor of 1 mV.
It is possible that equipment used to acquire data between two sur-

eys are from different vintages. For example, newer equipment typ-
cally has better signal-to-noise ratio compared to older equipment.

e consider such a scenario in constructing the second synthetic ex-
mple. In the second example, we contaminate the base data with
aussian noise with standard deviation of 15% and the monitor data
ith 5%. The base level error of 1 mV is same for both data sets.

ase model

In the base inversion, we advocate using a simple half-space con-
uctivity model, e.g. the best-fit half-space model, as the reference
odel, although this is not a strict requirement. If detailed subsur-

ace information is available, incorporating this information into the
eference model may speed convergence and improve the final im-
ges. Minimizing the objective function in equation 3 provides us
ith the base model denoted by mbase shown in Figure 1a. As noted

arlier, the time-lapse model is generated by increasing the conduc-
ivity by a factor of two in localized region. This is a conservative
erturbation given that the conductivity of granite ranges from 1.3
106 �m when dry to 4.5�103 �m when wet and this range of

ariability is observed in a variety of earth materials �Telford et al.,
990�.

To track the changes to the base model we plot the quantity given
y

C � �mbase � � m

mbase � � 1, �5�

hown in Figure 3a. The percent change in the model is essentially C,
hich can be either positive or negative. Depending on the strength
f the expected time-lapse change, C can be bounded. When there is
o time-lapse change, C � 0. For the synthetic example presented
n this paper, C is bounded between 0�C�100.

odel subtraction after separate inversion

First we consider the example with the same level of noise be-
ween the base and the monitor data. The results are shown in the left
anel in Figure 3. The two separate inversions were carried out on an
dentical finite difference mesh. The best-fit half-space conductivity

odel from the base inversion was utilized as the reference model in
oth inversions. Choosing the same reference model for both of the
nversions provides a clear indication of the region where the time-
apse change has occurred �see the model difference plotted in Fig-
re 3b�.

The results from the second example �higher noise level in the
ase data� are shown in the right panel in Figure 3. For the second ex-
mple, we inverted the base and monitor data with the same refer-
nce model as in the first example. The resulting time-lapse change
s shown in Figure 3f. Comparing Figure 3b and f, we note the recov-
red time-lapse changes are very similar, however the model in Fig-
re 3f has more negative anomalies compared to Figure 3b. This is a
onsequence of increased noise level in the base data in the second
xample. As long as the noise assumptions are chosen appropriately
or the respective data sets, model differencing should provide stable
esults.

We note that in practical time-lapse problems the changes we
rack are small enough that the resolution of the two data sets is near-
y identical from a model resolution point of view. However, if two
urveys have different resolution, then artifacts may result by taking
he model differences after inversion �not shown�. In the examples
resented here, the base and the monitor data are inverted with the
ame mesh. If the parameterization of the base and monitor data are
ifferent, then model subtraction can degrade time-lapse response
ue to effects of regularization in the recovered models.

ase model as the reference model

As an alternative to using the same half-space reference model for
ach inversion, we elected to invert the base data using the best-fit
alf-space as the reference model, then invert the time-lapse data us-
ng the base model as the reference model �Anno and Routh, 2007;
ldenborger et al., 2007a�. We refer to this method as a cascaded

ime-lapse inversion approach. This should effectively localize the
odel differences within the region that is supported by the data be-

ause all other regions will revert to the base model.
Employing this technique, we see that the regions where time-

apse changes have occurred are clearly illuminated. Figure 1c
hows a much closer correspondence to Figure 1a than does Figure
b. We note that in both the approaches; i.e. model subtraction after
eparate inversions and inverting the time-lapse data with the base
odel as the reference; data repeatability is not a strict requirement.
It should be stated here, however, that differences in noise levels

etween data sets could result in different regularization of the two
nversions thus one result may be much smoother than the other. In
his case, the best approach would be to use the less noisy data set as
he base data set, and then use approximate noise assumptions in the
nversion of the time-lapse data set, although we emphasize that both
nversions should converge to the same rms misfit. The cascaded ap-
roach also provides the ability to build an updated model that has
he background information from the less noisy data and builds the
hanges on top of it. Thus the final model preserves the features ob-
ained with the less noisy data.

Figure 3c and g shows the time-lapse change obtained using the
ascaded method for the first and the second example respectively.
e clearly see the time-lapse change in Figure 3c and g agree well
ith the true anomaly in Figure 3a. However, Figure 3g has more
egative anomaly artifacts due to the increased level of noise in the
ase data. Except very minor differences, the time-lapse results from
he cascaded approach are very similar to the model subtraction ap-
roach in Figure 3b and f.

It is important to note that the cascaded approach is more practical
ompared to the model subtraction approach. We expect the conver-
ence to be faster for large 3D problems starting with the base model
s reference to invert the monitor data. In the model subtraction ap-
roach, starting with a homogeneous reference model such as the
est-fit half-space can be computationally intensive for large 3D
roblems.
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nversion of data differences

A commonly used method in time-lapse inversion is a data differ-
nce inversion approach expressed either explicitly in terms of data
ifferences or as a ratio �Slater et al., 2000; LaBrecque and Yang,
001; Johnson et al., 2005, 2007�. Here we difference the base data
nd the time-lapse data and directly invert for changes in the model.
epresenting the nonlinear mapping between the data and the model
y d � F�m� and assuming small changes in the model, a linear ap-
roximation can be used to represent the mapping between the mod-
l changes and the data changes.

We can write mathematically

� d �
�F�mbase � � m� � F�mbase��

F�mbase�
� �

j�1

M

Jij� mj

where, Jij �
1

F�mbase�i

�Fi�mbase�
�mj

base . �6�

quation 6 is a linearized equation, similar to the linearized IP for-
ard model in Oldenburg and Li �1994�. This implies that one can
se a linearized IP inversion code to invert difference data in a time-
apse experiment to obtain conductivity changes. Since the data
hanges are typically small we multiply the difference data from
quation 6 by 100 and write it as percent time-lapse change.

We generate the data difference for the two synthetic examples
nd invert the difference data using an IP inversion code. With differ-
nce data it is not straightforward to determine what standard devia-
ion to assign as the noise estimate. In the first example, the base and

onitor data have a noise level of 5%, therefore we choose the stan-
ard deviation for the difference data as 5% of the difference data

igure 4. Location of hydrological instruments and ERT line �modi-
ed from McNamara et al., 2005�.
agnitude plus a base level error of 1 mV. With this noise assign-
ent, the recovered time-lapse response from difference data is

hown in Figure 3d. The inverted response is represented in terms of
ercent time-lapse change.

The results clearly indicate that the recovered time-lapse anoma-
ies are lower in amplitude compared to previous approaches in Fig-
re 3b and c. Since the anomalies from difference inversion are low-
r in magnitude, we reinvert the difference data using a lower noise
ssumption with the hope of improving the time-lapse model. The
ecovered time-lapse anomalies in Figure 3e show that there is an in-
rease in amplitude of the time-lapse anomalies but it also enhances
he artifacts. This is a consequence of the nature of the difference
ata.As a general observation, this procedure is prone to data repeat-
bility issues because the two data are subtracted explicitly in equa-
ion 6 before inverting. Moreover, subtracting two data sets with dif-
erent levels of noise can accentuate the noise for the difference data.

In the second example, the noise assignment for the difference
ata is somewhat questionable because the base data has more noise
ompared to the monitor data. As a general observation we will ex-
ect the difference data of the two data sets, i.e., base and the monitor
o have noise characteristics that are higher. Based on this we choose
5% of the difference data magnitude plus a base level error of 1 mV
s the standard deviation of the data errors. The time-lapse model
rom the difference inversion in Figure 3h clearly indicates the effect
f the increased level of noise.

Comparing Figure 3h with 3g shows the time-lapse anomalies are
educed and the artifacts are enhanced in the difference inversion.
einverting the same difference data with lower noise assumption
roduces more artifacts, shown in Figure 3i. Both synthetic exam-
les show that the difference data inversion produces reduced anom-
lies and more artifacts. Thus our preferred method of time-lapse in-
ersion is either model subtraction or inverting the time-lapse data
y including the base model as the reference model during inversion.

FIELD DATA EXAMPLE

Long-term hydrological studies are being performed in a small
atchment, the Treeline Site �McNamara et al., 2005�, within the
arger Dry Creek Experimental Watershed near Boise, Idaho, USA
Figure 4�. Despite the large quantity and variety of hydrological
ata collected at this site, there is still only a general understanding
f the groundwater flow regime within the catchment. Because of
he high cost associated with installing monitoring wells and the fact
hat shallow bedrock prohibits piezometer installation beyond ap-
roximately one-meter depth, surface ERT is an attractive alterna-
ive method for understanding the subsurface site hydrogeology.

An ongoing question has focused on quantifying the infiltration
ate of groundwater recharge, as a source and/or sink, through frac-
ure systems within the Idaho Batholith. The goal of this study is to
elineate fracture zones within the bedrock to aid in estimating infil-
ration rates through the fractures and, ultimately, resolve the un-
nown source found by hydrological models. Four ERT surveys
ere collected at the same location during the months of October

nd December 2005,April 2006, and September 2007, with the hope
f imaging variations in pore water saturation within the fractures
hroughout the fall to summer time periods thus refining hydrologic

odels of the catchment.
The repeatability of the data acquired during two dry conditions

October 2005 and September 2007� and two wet conditions �De-
ember 2005 and April 2006� provide for an investigation of the
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Time-lapse ERT G13
ime-lapse change of the electrical conductivity and its relation to
ydrologic conditions. However, we note that the repeatability of the
ata sets acquired during wet conditions is better than those acquired
uring dry conditions and this is likely due to higher contact resis-
ance during the dry season.

ite description

The Treeline Site encompasses 0.02 km2 and is located at a mean
levation of 1620 m within the Dry Creek Experimental Watershed
Figure 4�. Total relief of the site is 70 meters. The Treeline Site
rends northwest to southeast, and encompasses land surface slopes
f 20°–40° over mostly concave and convex angles. This paper is
rimarily a fractured rock study, but most of the hard data that are
vailable for the site come from a thin soil layer covering the majori-
y of the site. Soils are derived from weathering of the Idaho
atholith �a biotite granodiorite intrusion� and are classified as

andy loam �Yenko, 2003� with depth ranges between 0.25 m and
.2 m with an average depth of 0.45 m. Soils are shallowest and
oarsest at ridge locations along the north and northeast boundaries.

Soil depth is greatest along lower slopes adjacent to the stream
hannel in the center of the catchment. Texture analysis �hydrometer
ethod� of the A, B, and C horizons of a 70-cm deep soil pit located
idslope on a north facing aspect exhibited minimal variation in

and �74%–80%�, silt �15%–17%�, and clay �7%–9%� �McNamara
t al., 2005�. The primary vegetation includes sagebrush, forbs,
rasses, and scattered trees with live canopy cover ranging from
%–11% during fall and winter months and 35%–45% in spring and
ummer seasons �Williams, 2005�.

Precipitation �annual average of 57 cm� falls mostly during the
old season, with approximately half the annual precipitation falling
s snow. Rain-on-snow events are common during the late fall and
arly spring seasons. During typical years, persistent snow pack re-
ains from mid-December through March with winter air tempera-

ures ranging between �10°C and �5°C. Summer months are hot
nd dry �air temperature ranges 20°C–28°C� with infrequent thun-
erstorms.

The site drains by an ephemeral stream. Stream flow typically be-
ins in early fall with the onset of rain, but remains low or episodic
ith snow pack development. Late fall and early winter rain on snow

vents and/or complete melt on southerly aspects generate small hy-
rograph peaks. Snow pack on the north-facing slope is usually
aintained from the onset of snowfall. The annual hydrograph peak

sually occurs in March orApril depending on the duration of snow-
elt �Williams, 2005�. Nearby wells �within the DCEW� have been

rilled to depths exceeding 100 m before reaching an adequately
roducing groundwater aquifer. Thus we do not expect to image the
ater table in this near-surface study.

RT data acquisition

The ERT data were acquired using the IRIS system described pre-
iously in the Methods section. Each of the four data collection days
onsisted of laying out the electrical survey line along the same pro-
le location running perpendicular to the stream axis �Figure 4�. The

otal spread length is 144 m with the instrument located at the center
f the spread. Spread length on each side of the instrument is 72 m
ith electrode spacing of 2 m for a total of 36 takeouts.
We acquired 645 quadripole measurements along the profile, us-

ng a dipole-dipole configuration with 2-m a-spacing and
-spacings from 1 to 10 to take advantage of the 10-channel capabil-
ty of the instrument.Aminimum of four and a maximum of 16 mea-
urements were stacked for each quadripole with a goal of 3% or
ower standard deviation for the repeated measurements. We trans-

itted a square wave with a period of 500 ms and requested a poten-
ial voltage of 800 mV on the measurement channel nearest the
ransmitting dipole. Data acquisition took approximately
0 minutes once the equipment was in place and the necessary pa-
ameters were input into the instrument.

Local elevation measurements were recorded at each slope break
long the survey line to determine topographical variation along the
urvey line. Within rugged terrain, the currents injected into the
round tend to disperse beneath topographic highs and converge
ithin topographic lows. The equipotential lines are distorted by the

opography and produce false anomalies �Telford et al., 1990�.
y measuring the topography, we were able to account for it in the
odeling and inversion, thus eliminating spurious structure in the
odels.
Figure 5 shows the ERT data from four different months. The re-

eatability of data during the wet season is better than during the dry
eason, but visual inspection shows that the repeatability is good in
oth dry and wet seasons given all the practical issues of data acqui-
ition. Due to lower conductivities during the dry periods, some of
he observed data points from October and September contained
igh errors �outliers� and were subsequently removed in order to
inimize voltage error.
Of the 645 data values collected for each profile, 570 and 594 data

alues were inverted for the October and September profiles, respec-
ively. We opted to remove the outliers from the data set because we
re using the L2 norm as the data misfit criteria in equation 2 �alter-
atively, we could have assigned higher standard deviations to the
utliers�. All of the data values collected in December and April ex-
ibited good data repeatability �	6% standard deviation� because
f wetter, more conductive subsurface conditions.

One difficulty that we faced in this time-lapse study was that we
ere unable to leave the electrodes in place for the duration of the ex-

igure 5. Apparent-resistivity data along the four ERT profiles. Note
he repeatability between all four surveys, especially between the
wo profiles acquired in wetter conditions �December 2005 and
pril 2006� and the two profiles acquired in drier conditions �Octo-
er 2005 and September 2007�.



p
e
c
d
p
c
s
w
e

T

t
a
m
F

t
b
r
t
T
t
t
w
c
d
r

a
v
m
a
a
c
2

c
s
s
c
v
m
a
b
t
p

l
l
t
c
c
c
h
t
f
o

G
N
m
N
p
p
�
s
r
w
e
a

F
t
v
p

F
l
s
m

G14 Miller et al.
eriment. This resulted in slightly different electrode locations for
ach of the surveys. These location errors are assumed to be minor in
omparison with the large differences in conductivity between the
ry season and the wet season. Even if the electrode locations were
ermanent, the contact resistances would vary because of dramati-
ally changing near-surface moisture conditions. This practical is-
ue reinforces our preferred method to invert the time-lapse data,
hich is to use the inverted model from a base data set as the refer-

nce model for subsequent time periods.

ime-lapse inversion of the Dry Creek data

The ERT profiles were first inverted individually. Noise assump-
ions for the inversion were 5% of the observed data amplitudes plus
base level of 0.01 mV. Inversion was carried out as described in the
ethods section. Individual inversion of each data set is shown in
igure 6.
Each of the individually inverted models indicate one of three dis-

inct conductive anomalies. The two smaller anomalies are located
eneath the south and north ridgelines �centered at 23 m and 132 m,
espectively� and the larger, more prominent anomaly is located near
he bottom of the north facing slope �centered at 65 m; Figure 6�.
he inverted models show obvious similarities and differences be-

ween the dry and wet season. Profiles collected under dry condi-
ions illustrate more distinct conductive and resistive regions,
hereas the wet periods display a smoother gradient between the

onductive and resistive regions �Figure 6�. Persistence of the con-
uctive anomalies in all four seasonal profiles implies that these rep-
esent actual subsurface structure rather than random artifacts.

igure 6. Inverted resisitivity models. Cool colors indicate conduc-
ive regions and warm colors indicate resistive regions. Depth of in-
estigation for these models was determined using the DOI ap-
roach of Oldenburg and Li �1999�.
INTERPRETATION OF FIELD DATA RESULTS

The volumetric moisture content is a measure of the relative
mount of water in a volume of soil so that its maximum potential
alue is the porosity of the soil. Volumetric moisture content was
easured hourly using a Campbell Scientific CR10X data logger

nd CS615 soil moisture sensors at depths of 5, 15, 30, 45, 60, 65,
nd 100 cm. The CS615 sensors were calibrated in situ with colo-
ated time-domain reflectometry wave guides �Chandler et al.,
004�.

The soil is very dry during the summer months when the moisture
ontent remains relatively stable near 0.07. The 22 October 2005
urvey occurred near the end of this stable dry period, prior to the on-
et of fall rains. Through the winter months the moisture content os-
illates around 0.2. The 22 December 2005 and 14 April 2006 sur-
eys occurred at the beginning and end of this period, after which the
oisture content drops towards its summer low �Figure 7�. Based on

pproximately two years of soil moisture data for the site, the Octo-
er 2005, December 2005, and April 2006 surveys were representa-
ive samples of a prolonged dry period, a rapid wetting period, and a
rolonged wet period respectively.

The persistent conductive regions within the inverted models are
ikely due to pore fluids in fracture zones. These anomalies are more
ocalized in the profiles collected during dry conditions compared to
he profiles gathered during water-saturated conditions. The in-
reased conductivities within the October and September profiles
ould indicate presence of clays. The conductive anomalies in De-
ember andApril are attributed to increased water input into the geo-
ydrological system through precipitation that percolates through
he soil column and into the fracture zones.Apersistently conductive
racture zone on the south-facing slope may represent a key pathway
f bedrock infiltration.

A fracture trace analysis of the Idaho Batholith conducted by
ates �1994� found three major fracture sets striking N20°E,
20°W, and N70°W. A more recent fracture analysis concluded a
ean strike direction of joints at N15°W �Hoffman et al., 2005�. The
20°E fracture set strikes along a similar direction to the transverse
rofile while the N20°W and N15°W fracture sets are nearly per-
endicular to the profile line. The large anomaly centered at 65 m
Figure 6� extends approximately 20 m laterally and may be repre-
entative of two intersecting fracture sets �N20°E and N20°W�. The
emaining anomalies may be the result of intersecting fracture joints
ith strike between N15°W to N20°W. This interpretation is in gen-

ral agreement with what is known about the fracture system in the
rea �Gates, 1994; Hoffman et al., 2005�.

igure 7. Volumetric soil moisture data from the study site. Data col-
ection dates are indicated on the plot. This plot shows the average
oil moisture in the approximately one-meter-thick soil column �soil
oisture sensors at 5, 15, 30, 45, 60, 65, and 100 cm depth�.
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elating the conductivity increase to an increase in
ater saturation

Using a petrophysical transformation, we can relate the electrical
onductivity to water saturation �see Appendix A for additional de-
ails�. Because the data were collected throughout the year, this al-
ows us to quantify the seasonal variability in water saturation at the
ite. Using a form of Archie’s law �Archie, 1942�, we rearrange the
quation to solve for the water saturation 
 ,


 � � � t

a� w�m�
1
n

, �7�

here � t is the modeled conductivity; � w is the fluid conductivity
we use 0.014 S/m based on nearby well measurements�; � is the
orosity; and a, m, and n are fitting parameters. We used values
rom Carmichael �1989� for igneous rock with 4% porosity for these
tting parameters �a � 1.4, m � 1.58, and n � 2�.
The water saturations computed for each time period are shown in

igure 8. For the dry months, the saturation is very low except in a
ew compact regions. A possible explanation for these apparently
ighly saturated regions is that Archie’s law does not work well in
he presence of clays. There may be significant clay alteration of the
edrock in these areas; or alternatively, these may represent electri-
ally conductive mineralized fracture zones. In the wet periods, the
rofiles appear to have a higher saturation throughout.

To better visualize the changing saturation, it is useful to look at
here and how the conductivity is changing throughout the year.
igure 9 shows the percent change in conductivity from October to

igure 8. Water saturation in percent, calculated for each of the four
onductivity models usingArchie’s law �equation 7�. Cool colors in-
icate higher saturation and warm colors indicate lower saturation.
ecember, and from October to April. In some localized regions the
onductivity decreases but globally there is an overall increase in
onductivity going from the dry period in October to the wetter peri-
ds in December andApril. This could be explained by transitioning
rom conduction paths dominated by clay content to conduction
aths dominated by pore fluid saturation.

The conductivity changes of Figure 9 were used along with Equa-
ion 7 to compute the saturation increase in the model �Figure 10�
rom the dry season into the wet season. Note that in this case, the
etrophysical relation is more meaningful because the model chang-
s are not affected by the presence of clays. In December �Figure 10�,
he saturation increase is limited to a few distinct regions of the mod-
l. These regions are most likely the well-connected fracture zones,
nd thus quickly become more saturated when there is an increase in
oil moisture. Later in the wet season, the regions of increased satu-
ation are more pervasive through the model �Figure 10�, likely due
o groundwater infiltration into smaller fracture networks through-
ut the subsurface.

igure 9. Percent change in conductivity from the dry season to the
et season computed using equation 5. Cool colors indicate an in-

rease in conductivity and warm colors indicate a decrease in con-
uctivity.

igure 10. Percent increase in water saturation going from the dry
eason to the wet season. Cool colors indicate large increases in satu-
ation and warm colors indicate small increases in saturation. Note
hat the largest increases in saturation are confined to the near-sur-
ace soil layer and four distinct zones within the bedrock. These four
ones likely are related to fracture zones within the bedrock.
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CONCLUSIONS

Time-lapse ERT can be a very effective tool for monitoring
hanges in subsurface properties in an effort to understand and quan-
ify subsurface processes. We investigate three different approaches
o inverting time-lapse ERT data. As expected, the choice of the

ethod depends strongly upon the noise levels of the base and the
onitor data, i.e., the data repeatability. In the context of a small-

cale watershed study, we used synthetic and field data examples to
nvestigate the three different time-lapse ERT inversion strategies:
a� model subtraction after inverting the base and monitor data sepa-
ately, �b� inverting the base data to first obtain a base model and then
sing it as prior information to invert the monitor data and �c� invert-
ng data differences to recover the time-lapse anomalies.

The examples demonstrate that, of the three approaches, the data
ifferencing approach is most sensitive to noise in the data. If data
oise is well quantified and understood, and repeatability of data is
ood, the data differencing approach can be applied with confidence.
therwise, the preferred approaches are model differencing or using

he base model as the reference model to invert monitor data sets.
hese approaches, especially the latter, demonstrate a lower sensi-

ivity to variability in data noise and thus are less susceptible to pro-
ucing noise-related time-lapse artifacts.

In the field data example presented in this paper, we used static in-
ersion of individual data sets to identify the conductive anomalies,
nd used the base model as the reference model to ascertain regions
f increased conductivity. The regions with conductivity increase
re attributed to an increase in subsurface moisture content. This
ime-lapse inversion methodology enabled us to identify a bedrock
nfiltration pathway which had previously been inferred from hydro-
ogical studies, but was not well understood. The repeatability of the
ata over the multiyear study and the persistent features in the invert-
d models provided confidence in our interpretation of this water
athway.
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APPENDIX A

RELATION BETWEEN WATER SATURATION
AND ELECTRICAL CONDUCTIVITY

In this section we derive a relation between the change in soil
oisture content and the change in electrical conducivity. The petro-

hysical relation between moisture and conductivity used in this
ork is given byArchie’s law


 � � � t

a� �m�
1
n

. �A-1�

w

Consider that the soil moisture changes by an amount � 
 that re-
ults in the change in electrical conductivity by � � t, given by


 � � 
 � �� t � � � t

a� w�m � 1
n

. �A-2�

aking the logarithm on both sides of equation A-2 and expanding
e obtain

log�
�1 �
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The first term on the left-hand side of equation A-4 cancels the
rst term on the right-hand side. Note that for x�1, log�1 � x�	x,
o that for small perturbations in saturation and electrical conductiv-
ty, i.e., � 
 /
 �1 and � � t/� t �1, equation A-4 reduces to

� 




�

1

n

� � t

� t
. �A-5�

Therefore, � � t/� t will directly indicate changes in relative satu-
ation and much of the complication of the petrophysical model is
implified. Equation A-5 indicates that � 
 /
 is a scaled version of
� t/� t.

For a general nonlinear petrophysical relation between saturation
nd electrical conductivity we consider


 � f�� t,� w,�,m,a,n� , �A-6�

nd the change in saturation due to perturbation of conductivity is
iven by


 � � 
 � f�� t � � � t,� w,�,m,a,n� . �A-7�

Using Taylor’s series expansion and by neglecting the higher or-
er terms, we obtain


 � � 
 � f�� t� �
� f

�� t
� � t. �A-8�

his provides a mapping between the relative change in saturation
nd relative change in conductivity scaled by the sensitivity of the
etrophysical relation with respect to the measured changes in con-
uctivity. This is given by

� 




� � � log f

� log � t
�� � t

� t
. �A-9�

f we useArchie’s law, then the sensitivity is given by the scale factor
/n.

� �log f�
� �log � �

�
1

n
. �A-10�
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