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Estimates of bedrock infiltration from mountain catchments in the western U.S. are essential to water
resource managers because they provide an estimate of mountain block recharge to regional aquifers.
On smaller scales, bedrock infiltration is an important term in water mass balance studies, which attempt
to estimate hydrologic states and fluxes in watersheds with fractured or transmissive bedrock. We
estimate the a daily time series of bedrock infiltration in a small catchment in the rain snow transition
zone in southwest Idaho, using the difference between measured stream discharge and modeled soil drai-
nage. The accuracy of spatial patterns in soil water storage are optimized, rather than the more common
approach of minimizing error in integrated quantities such as streamflow. Bedrock infiltration is
estimated to be 289 mm ± 50 mm for the 2011 water year, which is 34% ± 12% of the precipitation
(95% confidence). Soils on the southwest facing slope drain more often throughout the snow season,
but the northeast facing slope contributes more total soil drainage for the water year. Peaks in catchment
soil drainage and bedrock infiltration coincide with rain on snow events.

Published by Elsevier B.V.
1. Introduction

Bedrock infiltration (BI) from mountain catchments, defined as
water that leaves the catchment boundaries through subsurface
drainage, is important from both catchment and groundwater per-
spectives. The typically thin soils in mountain catchments transmit
water to the soil bedrock interface where water can travel laterally
towards a stream or valley bottom, or infiltrate into underlying
bedrock. From the catchment perspective, BI can be an important
loss term in the water balance (Bales et al., 2011; Flerchinger and
Cooley, 2000; Graham et al., 2010; Han et al., 2012; Kelleners
et al., 2010). Small headwater catchments have been reported to
lose up to 40% of annual precipitation to BI (Aishlin and
McNamara, 2011), which can discharge down-gradient within
larger catchments (Katsuyama et al., 2010) or enter regional
groundwater systems (Thoma et al., 2011). The interaction of
catchment surface water with bedrock groundwater can have sig-
nificant controls on rainfall–runoff relationships (Katsuyama et al.,
2010; Tromp-van Meerveld et al., 2007). From the groundwater
perspective, BI can be an important source of mountain block
recharge (Hogan et al., 2004; Thoma et al., 2011; Wilson and
Guan, 2004). For example, most of the groundwater recharge in
the Great Basin region occurs in the mountainous divides between
basins (Flint et al., 2004; Hevesi et al., 2003; Scanlon et al., 2006).
However, estimation of BI is difficult and hydrologic modeling
studies often ignore this flux.

Quantifying the flux of water across the soil bedrock interface is
challenging for many reasons. The hydraulic properties of bedrock
are generally unknown, heterogeneous, and difficult to measure.
The heterogeneity of overlying soils create variable propagation
and storage of water in the soil profile even under uniform rainfall,
and the soil bedrock interface may not be a sharp transition, but
can be complicated by thick, variably weathered materials (e.g.,
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Notation

Units
l length
t time
m mass
K temperature
e energy
A catchment area (l2)
Ap area of polygon p (l2)
ATran actual transpiration (l)
BIWC whole catchment bedrock infiltration (l)
C LAI shape factor 1 (unitless)
D LAI shape factor 2 (unitless)
DOY day of year at time t (unitless)
DR drainage from the bottom of a soil layer (l)
DRp drainage to the soil bedrock interface from polygon p (l)
DRt whole catchment drainage to the soil bedrock interface

at time t (l)
DRx,y drainage to the soil bedrock interface at location x, y at

time t (l)
dSt whole catchment change is soil water storage at time t

(l)
E evaporation (l)
Eel energy limited soil evaporation (l)
ETt whole catchment evapotranspiration at time t (l)
FCi field capacity of soil layer i (l3 l�3)
GSpk day of year of peak growing season when LAImax occurs

(unitless)
GSst growing season start day of year (unitless)
LAImax maximum leaf area index (l2 l�2)
LAIt leaf area index at time t (l2 l�2)

maxratio water availability of the wettest soil layer (unitless)
p index for polygon summation (unitless)
P total number of Thiessen Polygons in the catchment

(unitless)
PEL plant extraction limit (l3 l�3)
PET potential evapotranspiration (l)
PTran potential transpiration (l)
Qt stream discharge at time t (l)
Rn average daily net radiation (e l�2 t�1)
RDK soil water redistribution constant (t�1)
RDT soil water redistribution time (t)
St soil water storage (l)
SWIt whole catchment surface water input at time t (l)
T time duration to be integrated over (t)
tb beginning time step of summation (unitless)
te ending time step of summation (unitless)
tswi time from last water input event (unitless)
D slope of the saturated vapor pressure vs. air tempera-

ture line (m l�1 t�2 K�1)
Dt time interval for soil water balance calculation (t)
Dz soil layer thickness (l)
zi thickness of soil layer i (l)
c psychrometric constant (m l�1 t�2 K�1)
kv latent heat of vaporization (e m�1)
h volumetric soil water content at the end of the time

interval Dt (l3 l�3)
hi volumetric soil water content of soil layer i (l3 l�3)
h0 initial volumetric soil water content at the time interval

Dt (l3 l�3)
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saprolite). Although unique conditions may exist in some locations
to allow direct measurement of BI, such as caves underlying catch-
ments in karst terrain (Sheffer et al., 2011; Taucer et al., 2008),
direct measurements are rarely possible due to the diffuse and
inaccessible location of BI occurrence. Methods to quantify BI are
generally indirect (Sammis et al., 1982) and include residual
estimates from detailed mass balance studies of water or con-
servative solutes (Aishlin and McNamara, 2011; Graham et al.,
2010), numerical modeling at a lower soil boundary (Dijksma
et al., 2011; Guan et al., 2010; Kelleners et al., 2009, 2010; Selle
et al., 2011; Wang et al., 2011), and using storage–discharge
relationships (Ajami et al., 2011).

Annual mass balance approaches calculate BI as a residual,
which includes the additive errors of all other mass balance com-
ponents. Generally, these approaches cannot be used to assess
the sub-annual timing of BI. Solute balance approaches also require
multiple years of data to overcome inherent assumptions, and even
then may only be correct when averaging over the period of record
(Aishlin and McNamara, 2011; Wood, 1999). Numerical modeling
of BI is hindered by a general lack of knowledge of the transmissive
properties of underlying bedrock, which makes model parameter-
ization challenging (Nolan et al., 2007; Sorensen et al., 2014;
Sutanudjaja et al., 2011). Storage–discharge relationships
(Brutsaert and Nieber, 1977; Kirchner, 2009) have been used to
assess mountain block recharge by recognizing that changes in
groundwater storage are related to both streamflow and recharge
(Ajami et al., 2011). Inherent in this approach is the assumption
that streamflow incorporates all drainage from catchment ground-
water storage. In ‘‘leaky’’ catchments, however, streamflow does
not represent all drainage. Rather, drainage is the sum of
streamflow and BI. When BI is significant, traditional storage–dis-
charge methods are not appropriate.

While many studies have estimated the magnitude of annual BI
over catchments or regions (Jie et al., 2011; Ragab et al., 1997;
Simmers, 1998; Van der Lee and Gehrels, 1997), few studies have
estimated the timing of BI on sub-annual timescales. The timing
and magnitude of BI is complicated by rain on snow (ROS) events
in the climatically sensitive rain snow transition zones of the
mountainous western U.S. The rain snow transition zone is the ele-
vation zone where the dominant winter precipitation phase
changes from rain at lower elevations to snow at higher elevations.
The elevation of this zone varies from sea level at high latitudes
(Feiccabrino et al., 2012) to over 2000 m at lower latitudes
(Cayan et al., 2001). This zone typically occurs between 1500 m
and 1800 m in the interior Pacific Northwestern U.S. and covers
approximately 9200 km2 (Nolin and Daly, 2006). The dominant
phase of precipitation in the rain snow transition zone is expected
to change from snow to rain as climate warming trends continue
(Cuo et al., 2011; Lutz et al., 2012; Mote et al., 2005; Nayak et al.,
2010) and the incidence of winter ROS events is expected to
increase (Lettenmaier and Gan, 1990). Although ROS events are
known to generate large amounts of runoff (McCabe et al., 2007),
there is a general lack of knowledge about how much BI they pro-
duce at event and annual timescales.

The goal of this study is to quantify the magnitude and sub-an-
nual timing of BI in a semiarid mountain catchment in the rain
snow transition zone north of Boise, Idaho, USA (Fig. 1). A water
balance approach at the soil bedrock interface is employed that
assumes water draining to the soil bedrock interface, DR, is either
routed laterally to streamflow, or vertically to bedrock infiltration.



Fig. 1. Location map of Treeline catchment showing location of weather station, flume, soil moisture profiles, and SEM model points.
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Drainage to the soil bedrock interface is modeled using a physically
based distributed snow model (Isnobal) loosely coupled to a soil
capacitance model (SEM). BI is then simply modeled drainage
minus measured streamflow. Uncertainty estimates are also made
for each all terms in the mass balance. This paper addresses the fol-
lowing questions: (1) What is the spatiotemporal distribution of
DR to the soil bedrock interface, (2) what is the uncertainty in
simulated BI using a storage-based model, (3) what is the magni-
tude and timing of BI in a rain snow transition zone catchment,
and (4) what are the relative contributions of ROS, snowmelt,
and other events to total annual BI.
2. Background

BI is investigated in a mountain catchment with thin soil and an
intermittent stream by employing a water balance approach at the
soil bedrock interface. While recognizing that the hydrologic path-
ways of water arriving at the soil bedrock interface are compli-
cated, we assume flow arriving at this surface is partitioned
either laterally into streamflow, or vertically into BI. Estimating
BI is then a matter estimating flow to the soil bedrock interface,
henceforth referred to as drainage (DR), and measuring stream-
flow. The former requires hydrologic modeling to bypass the insur-
mountable difficulties of measuring basin wide soil drainage.

We chose a modular hydrologic modeling approach that
allowed us to apply detailed physically based distributed models
for some essential processes while conceptualizing other processes
with simple, more efficient approaches (e.g. Bartolini et al., 2011;
Papalexiou et al., 2011; Zhang et al., 2008). This approach relies
on site-specific knowledge of both the hydrologic processes that
must be faithfully represented, as well as those that can be simpli-
fied. Previous work in the study site, the Dry Creek Experimental
Watershed, has demonstrated the following principles that have
guided our model development: (1) snow accumulation and melt
patterns are highly variable in time and space (Anderson et al.,
2014; Kormos et al., 2014a,b), (2) spatial variability of soil moisture
is correlated with the spatial variability of snow cover and snow
melt (Williams et al., 2009), (3) lateral flow in the unsaturated soil
column and overland flow is negligible (McNamara et al., 2005), (4)
spatial and temporal patterns in hillslope soil moisture are related
to intermittent streamflow (McNamara et al., 2005), and (5)
streamflow in upland intermittent streams is disconnected from
deep, regional groundwater (Miller et al., 2008). We also recognize
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that catchment storage is central to hydrological processes on all
scales and is becoming increasingly recognized as an important
control on water flux thresholds, slope connectivity, and residence
times (Kirchner, 2009; McNamara et al., 2011; Spence, 2007;
Spence et al., 2010; Tetzlaff et al., 2014).

This previous work suggests that hydrologic fluxes in the
study site are dependent on the spatial distribution of snow accu-
mulation and melt, and the storage and transmission properties
of soil. We therefore present a combined modeling and measure-
ment study that focuses on catchment water storage in snow and
soil reservoirs within the study catchment. We used the physi-
cally based Isnobal model to calculate surface water input
(SWI), which is the sum of snowmelt, rainfall that drains through
the snowpack, and rainfall on bare ground (Reba et al., 2011;
Winstral and Marks, 2002). SWI output from Isnobal is used as
a boundary condition for a hydrology model that simulates sub-
surface flow and storage processes. Isnobal has been successfully
used to provide SWI to hydrologic models of differing complexity.
In the Boise River basin (2150 km2), Isnobal was coupled to a
water balance and streamflow simulation model to demonstrate
that a spatially distributed energy balance snowmelt model can
be used in a large mountainous catchment using data from exist-
ing meteorological networks (Garen and Marks, 2005). In the
Reynolds Mountain East subwatershed of the Reynolds Creek
Experimental Watershed (0.39 km2) in the Owyhee Mountains
of southern Idaho, Isnobal was coupled to the more complex
PIHM model to illustrate the consequences of using a temperature
index snowmelt model compared to using physically based snow-
melt model (Kumar et al., 2013). In the current study, we use the
Soil Ecohydraulic Model (SEM), a soil water capacitance-based
parametric model to estimate BI from the rain snow transition
zone (Seyfried, 2003).

The combination of a detailed physically based model to pro-
vide simulated SWI to a conceptual soil model is similar to the
approach used by Seyfried et al. (2009). Soil water dynamics in that
study were simulated for wide range of soil and SWI conditions for
2 years in Reynolds Mountain East, which is known to have an
extreme spatial range in SWI resulting from snow drifts (Marks
and Winstral, 2001). The Seyfried et al. (2009) study: (1) verified
that Isnobal calculated snow depth was accurately distributed in
space and time across Reynolds Mountain East, (2) found close
agreement between measured and SEM-simulated soil water
content in 14 different soil profiles over a two year period, (3)
demonstrated that a catchment-wide effective storage capacity
could be determined from spatially distributed soil water
dynamics, and (4) showed that catchment-wide soil water drai-
nage through the root zone was in close agreement with measured
streamflow. Reynolds Mountain East is underlain by volcanics,
which allowed for rapid subsurface lateral flow in the bedrock,
and a relatively impermeable discontinuity at the weir limiting
BI. The lesson for this current study is that accounting for the tim-
ing of the one-dimensional delivery of water to the soil bedrock
interface is more important than accounting for two-dimensional
lateral fluxes. Because both BI and streamflow result from hydro-
logic partitioning at the soil bedrock interface, we argue that BI
can also be also simulated well with this approach.

An important difference between the Seyfried et al. (2009)
study and the current study is that the Treeline catchment is
underlain by granite, where flow is assumed to be limited to
fractures. This fracture flow makes it difficult to collect all water
exiting the catchment via lateral flow at a weir, and makes flow
at the soil bedrock interface important. Watershed hydrologists
commonly assume that the flow collected at a mountain weir
accounts for all flow from a catchment. However, the amount of
flow that exits these basins by a combination of BI and fracture
flow is generally unknown.
In this study, BI is simulated for the 2011 water year (WY2011),
October 1, 2010 through September 30, 2011. SWI from the Isnobal
model is obtained from Kormos et al. (2014a). Distributed point
measurements of snow depth, snow density, and soil moisture
are used to calibrate and validate modeled snow and soil storage
results, in contrast with the more common approach of calibrating
to streamflow. The flux of interest, BI, cannot be used for calibra-
tion as coincident validation data for BI are not available.
Fortunately, other studies estimate BI in the highly instrumented
Treeline catchment of the Dry Creek Experimental Watershed,
henceforth called Treeline, (referred to as Upper Dry Creek in
McNamara et al.,(2005)) using a variety of methods. Aishlin and
McNamara (2011) estimate that Treeline loses between 17% and
44% of annual (wind-corrected) precipitation to BI using a chloride
mass balance approach for 2005 through 2009. Kelleners et al.
(2010) arrive at a similar conclusion (34–36% of measured shielded
precipitation) by applying a physically based hydrology model to
the catchment. In the latter study, BI is represented with a
Darcian equation and a calibration objective function that com-
bines soil moisture and streamflow to get an optimized vertical
saturated hydraulic conductivity of the bedrock. This current study
builds upon previous work in the catchment by accounting for
wind redistribution of snow to improve simulations of SWI
(Kormos et al., 2014b), and by using better soils information for
improved storage estimates (Kormos et al., 2014a). By accounting
for the snow and soil water dynamics that are important at this
site, we are able to provide BI estimates at a sub-annual time scale.
Additionally, we perform improved BI uncertainty estimates.
3. Study site

Treeline is an intensively instrumented 1.5 ha catchment within
the Dry Creek Experimental Watershed in the semiarid foothills
north of Boise, ID (Fig. 1). The catchment is defined by the location
of a v-notch weir in the intermittent stream channel. Treeline
ranges in elevation from 1600 m to 1645 m, which situates it in
the current rain snow transition zone. It is dominated by northeast
(NE) and southwest (SW) facing slopes. The catchment is underlain
by fractured granitic bedrock (Gribb et al., 2009). Thin sandy soils
range in thickness from 20 cm to 125 cm and average 48 cm
(Williams et al., 2009). Soils are underlain by up to 100 cm of sapro-
lite. Wet season conductive anomalies identified from an electrical
resistivity tomography survey suggest water percolation through
bedrock fractures (Miller et al., 2008). That survey and the intermit-
tent behavior of the stream suggest a lack of connection between
the stream and the regional groundwater storage reservoir.
Vegetation is typical of a transition between lower elevation grass-
lands and higher elevation forests. The NE slope is typified by
mountain big sagebrush and ceanothus shrubs, prunus subspecies,
forbs, and grasses. SW slopes have sparser vegetation and contain
mostly grasses, forbs, and sagebrush. There are 8 mature conifer
trees in the catchment that are assumed to have negligible influ-
ence on the catchment hydrology for the purpose of this study.

The Treeline meteorological station has been operational since
1999. The average annual measured precipitation at the shielded
gauge is approximately 670 mm with a mean annual temperature
of 9 �C. This study focuses on WY2011, which received above aver-
age precipitation totaling 855 mm measured at the shielded gauge,
of which 43% of fell as snow, 49% fell as rain, and 8% fell as mixed
events. The catchment experienced 2 major and 3 minor ROS
events in WY2011. The 2011 snowpack was highly variable in time
and space due predominantly to aspect differences in energy bal-
ance terms and wind redistribution of precipitation during snow
storms (Kormos et al., 2014a,b). The mean WY2011 air tempera-
ture was cooler than average with a mean of 7.4 �C.



Fig. 2. Schematic of the spatial distribution of Isnobal model pixels versus the
Thiessen polygons representing points where SEM model runs. SWI from Isnobal
pixels are averaged over the 57 Thiessen polygons then summed over the daily time
step to get a daily snow water input. Thiessen polygons are color coded by soil
depth measured at the model point. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

P.R. Kormos et al. / Journal of Hydrology 525 (2015) 231–248 235
4. Methods

4.1. Conceptual approach

Whole catchment bedrock infiltration (BIWC) is calculated as the
residual of the catchment water balance integrated over a specific
duration, T, as

BIWC ¼
Z

T
½SWIt � ETt � Q t � dSt�dt ð1Þ

where SWIt, ETt, Qt, and dSt are the magnitudes of whole catchment
SWI, evapotranspiration, streamflow, and change in water storage,
respectively, at time instant t. The terms SWIt, ETt, dSt are combined
to calculate whole catchment drainage, DRt, which is the water that
drains from the base of the soil profile to the soil bedrock interface

DRt ¼ SWIt � ETt � dSt ð2Þ

A premise of our approach is that water that drains to the soil
bedrock interface is either routed laterally along the interface to
the stream, or infiltrates into the bedrock and becomes BI. Thus,
BIWC is the difference between DRt and Qt integrated over T

BIWC ¼
Z

T
½DRt � Q t �dt ð3Þ

This approach assumes that the lag time between DRt and Qt is
negligible relative to T. Spatially, DRt is represented as

DRt ¼
1
A

ZZ
DRx;ydxdy ð4Þ

where A is the catchment area, x and y are the coordinates of points
in A, DRx,y is the drainage from the soil column at all such points at
time t. Combing Eqs. (1), (3) and (4) yields

BIWC ¼
Z

T

1
A

ZZ
DRx;ydxdy

� �
t
� Qt

� �
dt ð5Þ

In this study, time in Eq. (5) is discretized to daily time steps
(t = 1 day) so that

BIWC ¼
Xte

t¼tb

ðDRt � Q tÞ ð6Þ

where tb and te are the beginning and ending days defining T, and
DRt and Qt are catchment drainage and streamflow for each day, t.
DRt in Eq. (6) is obtained by summing the drainage from Thiessen
polygons surrounding all modeled points in a catchment at time t.

DRt ¼
1
A

XP

p¼1

DRpAp ð7Þ

where DRp and Ap are the drainage and area of any given polygon, p,
and P is the total number of polygons. In this study, we used 57
model points to create Thiessen polygons where soil depth and tex-
ture were measured (Williams et al., 2009) (Fig. 2).

Substituting Eq. (7) into Eq. (6) yields a final equation for
calculating BIWC over any duration of interest using modeled DRp

and measured streamflow

BIWC ¼
Xte

t¼tb

1
A

XP

p¼1

DRpAp

 !
t

� Qt

" #
ð8Þ
4.2. Models

Drainage from each soil polygon is calculated according to Eq.
(2) using a storage-centric modeling approach similar to Seyfried
et al. (2009). The Isnobal model, responsible for simulating SWI
(Kormos et al., 2014b), and the Soil Ecohydraulic Model (SEM),
responsible for simulating water draining from the soil column,
are loosely coupled.

4.2.1. Isnobal
Details of the Isnobal-derived SWI time series used as the sur-

face flux (Neumann boundary condition) to the soil surface layer
can be found in Kormos et al. (2014b). This study accounted for
wind redistribution of snow, albedo decay from late season litter
accumulation, and partial snow cover. Isnobal was run at an hourly
time step on a 2.5 m2 grid. This resulted in the hourly, distributed
SWI to the catchment required to run the SEM model across the
catchment. Since SEM was run at a daily time step at 57 points
across the catchment, modeled SWI output was averaged spatially
and accumulated temporally. To do this, the catchment was first
divided into dominant slopes (Fig. 2). The SW slope was divided
into two dominant slopes so the differences in snow characteristics
could be better translated to SEM polygons. This division is only
used to create SEM domains and all results are grouped by NE
and SW slopes. Thiessen polygons were then created within each
slope to assign each of the 57 modeled points a catchment area.
All pixels within each polygon were then averaged for each hourly
time step and accumulated by day as input to SEM.

4.2.2. Soil ecohydraulic model (SEM)
SEM is a one-dimensional, soil water capacitance-based

parametric model to estimate soil water storage, DR, and evapo-
transpiration (ET). It follows models developed by Hanks (1974),
Wight and Hanks (1981), and Ritchie (1985) and is similar to that
described by Evans et al. (1999) in that the approach focuses on
soil water storage as opposed to calculating the flux through the



Fig. 3. (a) Modeled snow water equivalent at the weather station with ROS events highlighted. (b) Daily minimum and maximum air temperature and (c) daily incoming
shortwave radiation as input to SEM.
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soil. The model is described in somewhat different context in
Seyfried et al. (2009), Seyfried (2003), and Finzel et al. (in
preparation). SEM requires time series of SWI, minimum and maxi-
mum air temperature, and incoming shortwave radiation as
boundary conditions (Fig. 3). DR is calculated as the excess SWI
after soil water storage and ET demands are met. SEM assumes
water drains vertically downward through user-defined soil layers
in accordance with parameters that describe the vegetation
dynamics and soil properties (Seyfried, 2003; Seyfried et al.,
2009). Soil layers are assigned hydraulic parameters describing
water retention and drainage characteristic including soil sat-
uration water content (SAT), field capacity (FC), and plant extrac-
tion limit (PEL) (Seyfried et al., 2009). Capacitance-based models
rely on the concept that soils have a FC soil moisture content below
which drainage due to gravity becomes negligible. Soil moisture
excursions above FC provide water for DR and BI.

SEM assumes that there is no overland flow and all SWI infil-
trates into the soil within each time step. SEM calculates water
content for each soil layer at each time step. If SWI is greater than
SAT of the top layer, the water content of the top layer is assigned
to be equal to SAT, and additional water is routed to successively
deeper layers. This process is repeated until all of the SWI is
accounted for in the soil layers. If all layers are saturated, addi-
tional SWI routes directly to DR from the polygon, DRp.

After the infiltrated water gets distributed among soil layers,
water drains from each layer. The rate of water loss by drainage
in the absence of additional inputs or outputs can be approximated
as an exponential decline towards FC (Hillel, 1980). The
exponential drainage assumption is based on the widespread
observation that the rate of soil drainage is proportional to the
amount of water stored in the profile above FC. Given this approx-
imation, for any given soil layer the volumetric water content (h) at
the end of a time period is equal to

h ¼ FC þ ðh0 � FCÞ � expðRDK � DtÞ ð9Þ

where the subscript 0 represents the initial condition and Dt is the
time interval the water balance is calculated over. The amount of
water leaving a given soil layer, DR is

DR ¼ ðh0 � hÞ � Dz ð10Þ

where Dz is the layer thickness. The rate that h approaches FC
depends on the value of the redistribution constant, RDK, calculated
as

RDK ¼ logð0:05Þ
RDT

ð11Þ

where RDT is a redistribution time estimated as the length of time
required for 95% of the soil water to drain. We used a suggested
RDT value of 7.5 days (Seyfried et al., 2009) because it matched
measured soil moisture responses to melt-drain events, where the
soil wets quickly then drains in the absence of SWI or ET (Fig. 4).
RDK could also be calibrated to measured data, however, the RDT
term gives an intuitive idea of how drainage occurs in soils. In the
absence of ET and SWI, and as consecutive time steps reach RDT,
h will approach FC.



Fig. 4. Measured soil moisture from the northeast facing slope including modeled results SEM8. Horizontal lines show the empirical values of field capacity (FC) and plant
extraction limit (PEL) parameters.
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After soil drainage from each layer is calculated, ET is modeled
within SEM using a modified Priestly–Taylor approach (Priestley
and Taylor, 1972) when snow cover is gone from the surface.
Daily potential evapotranspiration (PET) is calculated by:

PET ¼ 1:26� D
Dþ c

� �
� Rn

kv
ð12Þ

where D is the slope of the saturated vapor pressure versus air tem-
perature relationship, Rn is the average daily net radiation, kv is the
latent heat of vaporization, and c is the psychrometric constant
(Arnold et al., 1990). Rn is calculated from average incoming short-
wave radiation, a surface albedo, and average air temperature.

Actual evaporation from the soil surface (E) is calculated as a
function of PET, the energy limitation provided by vegetative shad-
ing (Eel), and the time (days) from the most recent water input
event (tswi) such that (Ritchie, 1972; Jensen et al., 1990):

Eel ¼ PET � expð�0:4� LAItÞ ð13Þ

and

E ¼ Eel �
ffiffiffiffiffiffiffi
tswi
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tswi � 1

p� �
ð14Þ

Eel proceeds to a user-defined minima (0.02 m3 m�3). Surface evap-
oration from under snow cover is assumed to be zero. E is bounded
to have a maximum value of 2 mm on a day where SWI occurs.

Transpiration is dependent on the amount of exposed leaf area,
which follows strong seasonal trends. The annual vegetative
‘‘green up’’ in the spring and ‘‘brown down’’ in summer, which
are strongly driven by solar radiation and temperature due to a
lack of summer rainfall, is represented by the following equation
in which the constants C and D are empirical, LAImax is the maxi-
mum annual LAI, GSst is the start of the growing season and GSpk

is the date of maximum LAI. See Seyfried (2003) for example
applications.

LAIt ¼ LAImax �
t � GSst

GSpk � GSst

� �C

� exp
C
D
� 1� DOY � GSst

GSpk � GSst

� �D
 !

ð15Þ

The non-soil water limited potential transpiration (PTran) is
calculated as:

PTran ¼ PET � LAIt

3
ð16Þ

Actual transpiration (ATran) is limited by the amount of plant
available water in the wettest soil layer and ranges from PTran in
wet soil to 0 at PEL such that:

ATran ¼ PTran�maxratio ð17Þ

where maxratio is a measure of the water availability of wettest soil
layer

maxratio ¼ max
hi � PELi

FCi � PELi

� �
ð18Þ

PTran is set to PET if LAIt is greater than or equal to 3.0. The
i subscript indicates the soil layer. ATran is distributed across soil
layers based on a combined weighting function that accounts for
the proportion of a layer of the total profile thickness, available soil
moisture, and root distribution. The root distribution is assumed to
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have an exponential decline with depth based on a user-defined
maximum rooting depth (Jackson et al., 1996). A constraint is
imposed so that the sum of P and E cannot exceed PET.

Modeled soil water storage (St) at time t is calculated from mod-
eled hi remaining after DR and ET are accounted for in all layers as:

St ¼
X#soil layers

i¼1

hizi ð19Þ

where zi is the soil layer thickness of layer i. Measured St is calcu-
lated much the same way from measured h from all depths in soil
moisture profiles. Both field measurements and model outputs are
expressed in hi and converted to storage to get a magnitude of water
storage.

4.2.3. Parameterizing the soil ecohydraulic model
Soil layers are defined for each of the 57 model points where

soil depth (Fig. 2) was measured based on the following criteria.
Each point consists of a 2.5 cm soil surface layer that is underlain
by a 7.5 cm layer. The thickness of deeper soil layers is dependent
on measured soil depth at that location (Fig. 2). If a soil profile is
less than 30 cm, the rest of the soil depth is taken up with a third
layer. If the soil profile is deeper than 30 cm, a third layer is
assigned a thickness of 12.5 cm. If a soil profile is less than
60 cm, the fourth soil layer takes up the rest of the soil depth to
bedrock. If the soil profile is greater than 60 cm, the fourth layer
is 22.5 cm thick, and a fifth layer will take up the rest of the soil
depth until a pit reaches 100 cm. If a soil profile has a depth over
100 cm, a 30 cm fifth layer is created and the rest of the soil depth
is attributed to a sixth layer. The maximum number of soil layers
used in this study is six. This scheme allows for a surface layer with
large evaporative flux and close comparison between many of the
measured and modeled soil moisture contents.

Model parameters required by SEM that were not directly mea-
sured are listed in Table 1 with a brief description of the method
used to obtain values. Values of SAT, FC, and PEL need to be pro-
vided for each soil layer. FC and PEL are empirically derived from
measured soil moisture time series following the methods of
Smith et al. (2011) (Fig. 4d). A separate linear relationship between
soil depth and FC was developed for the NE and SW (Fig. 5a and b).
Separate step models between soil depth and PEL values were
developed for the NE and SW slopes (Fig. 5c and d). A minimum
PEL value of 0.040 was used for both slopes for soil depths between
0 cm and 5 cm. Soil layers on the NE slope with a mean depth dee-
per than 5 cm were assigned a PEL value of 0.093, while soil layers
Table 1
List of model parameters with a brief description of the methods used to obtain
parameter values.

Parameter Method

Field Capacity (FC) Empirical from measured annual soil moisture data
(Fig. 4d)

Plant Extraction Limit
(PEL)

Empirical from measured annual soil moisture data
(Fig. 4d)

Soil Saturation (SAT) Empirical from measured texture data (Saxton et al.,
1986)

Redistribution Time
(RDT)

Literature (Seyfried et al., 2009) and data observa-
tion

LAI Shape Factors
(C and D)

Held constant to ensure quick green up and dry
down by August

LAI Start Day of Year
(GSst)

Slope-averaged snow meltout date from Isnobal

LAI Maximum Value
(LAImax)

Optimized see Parameterizing the Soil Ecohydraulic
Model

LAI Minimum Value
(LAImin)

Optimized see Parameterizing the Soil Ecohydraulic
Model

LAI Peak Day of Year
(GSpk)

Optimized see Parameterizing the Soil Ecohydraulic
Model
on the SW slope with a midpoint deeper than 5 cm were assigned a
PEL value of 0.072. SAT was defined for all soil layers using an
empirical relationship using soil texture (Flerchinger et al., 1996;
Flerchinger and Pierson, 1991; Saxton et al., 1986). Measured sur-
face soil texture data (0–30 cm) was used to calculate SAT for
appropriate soil layers. Deeper soil texture values were obtained
from sparse measurements on the north aspect (Yenko, 2003). A
snow-free surface albedo of 0.15 was used based on 4-component
radiometer data from the site, which agrees with albedo values
used by Flerchinger et al. (1996) for a similar site.

Rooting depth was assumed to be the measured soil depth,
which assumes that plants root to the bedrock surface. Previous
studies (Spence, 1937) and field observations on the NE slope con-
firm the presence of roots at the bedrock surface. This assumption
limits transpiration to the soil zone and disregards transpiration
from the fractured bedrock zone. We acknowledge that roots
may extend into the fracture network and there may be some tran-
spiration from below the soil bedrock interface. However, we
believe that the contribution is small because the storage capacity
in the bedrock is small. This assumption appears reasonable in
light of the relatively low stature, sparse vegetation on the site
relative to the annual precipitation. That is, summer time tran-
spiration is dependent on stored water, which appears to be very
limited.

Separate LAI time series are constructed for SEM points on NE
and SW slopes because of observed differences in vegetation.
Three of the six parameters that define the LAI time series
(Eq. (15)) were optimized to each slope using measured soil
moisture between plant green up and soil dry down (April 5th,
2011 to July 20st, 2011) (Table 2). Prior knowledge of soil dynamics
at Treeline leads us to use the snow meltout dates for the GSst.
Slope average meltout dates are obtained from Isnobal modeled
pixels. Constant C and D shape factors are selected to insure that
the LAI time series rises quickly and returns to minimum value
by mid-August, as is observed at Treeline. GSpk, LAImin, and LAImax

parameters are optimized to each slope using a constrained
nonlinear search function (simplex gradient) to minimize the root
mean square error (RMSE) between modeled and measured soil
moisture. Measured soil moisture at all depths from profiles
Npit3 and Npit4 on the NE slope, and profiles SU10, SU5, and
SU20 on the SW slope were used. Profile SD5 was emitted from
the LAI parameter optimization because of suspected upslope
contributions to deep soil moisture values, which are not
accounted for in SEM.

4.3. Measured data

Meteorological data used to force SEM, and soil moisture, soil
depth, and soil texture data used to parameterize SEM are
described in detail in Kormos et al. (2014a). Air temperature and
incoming shortwave radiation were measured hourly at the
Treeline weather station and processed to daily values. Soil mois-
ture data was collected at two soil moisture profiles, Pit3 and
Pit4 installed on the NE slope, and 5 soil moisture profiles, SD5,
SU5, SU10, and SU20, installed on the SW slope (Fig. 1). Soil mois-
ture instruments are either calibrated and temperature corrected
water content reflectometers (Pit3 and Pit4), or time domain
reflectometry probes (SD5, SU5, SU10, SU20), which are known
to perform well in sandy soils (Chandler et al., 2004; Seyfried
and Murdock, 2001; Topp et al., 1980). An existing overland flow
collection plot on the NE slope was augmented with a lateral flow
collection profile to quantify lateral water movement. A trench was
dug to solid bedrock and grouted to inhibit vertical water loss. Two
pumps were installed to move water from bedrock depressions to a
tipping bucket when water was detected. Two steel collection
troughs were installed at 125 cm and 40 cm below the ground



Fig. 5. Field capacity (FC) vs. soil depth relationship for the northeast facing and southwest facing slopes.

Table 2
List of LAI time series parameters and values used on the two dominant slopes in
Treeline.

Parameter Northeast facing
slope (NE)

Southwest facing
slope (SW)

Growing season start DOY
(GSst)

111 97

Growing season peak DOY
(GSpk)

185 198

C 0.3 0.3
D 5 7
Leaf area index maximum

(LAImax)
1.0782 0.9125

Leaf area index minimum
(LAImin)

0.2741 0.1436
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surface in the trench face at soil boundaries, and water collected by
these troughs were routed through tipping buckets. Snow data
used to derive the modeled SWI time series include continuous
snow depths from 6 sensors and 10 weekly repeated snow surveys,
which consisted of distributed snow depth and density
measurements.

5. Results

5.1. Surface water input (SWI)

SWI modeling results from Isnobal are described in detail in
Kormos et al. (2014b) and time series of slope average SWI and
the timing of ROS events from this study are reproduced in
Fig. 6a. ROS events were delineated from the onset of atmospheric
conditions associated with a rain event, which included increased
air temperatures, wind speeds, and humidity, through the hydro-
graph recession associated with that event. Measured precipitation
(779 mm unshielded, 855 mm shielded) was corrected for wind
effects (935 mm) (Hanson et al., 2004), and snow storms were
redistributed over the catchment (859 mm basin average) follow-
ing a modified version of the methods presented by Winstral
et al. (2013). This method calculated accumulation ratios for each
model pixel based on slope breaks in the upwind direction, and
the degree of sheltering from or exposure to wind from surround-
ing topography. Winter precipitation from October to April was
35% rain, 10% mixed events, and 55% snow based on dew point
temperatures (Marks et al., 2013). Modeled sublimation from the
snowpack totaled 47 mm resulting in a basin average of 812 mm
of SWI for WY2011. We estimated an uncertainty in total SWI of
32 mm based on the RMSE between measured and modeled snow
water equivalent during 10 snow surveys (Kormos et al., 2014b).
Uncertainty in the total precipitation amount due to wind redis-
tribution alone was approximately ±20 mm. We conservatively
used the higher magnitude of 32 mm as our uncertainty in the
SWI, since error in snow water equivalent is a combination of
errors in accumulation, melt and sublimation (Table 3).

5.2. Streamflow (Q)

Q at Treeline typically initiates in the winter and ceases in the
late spring to early summer (Fig. 7b). During this study, streamflow
initiated in mid-November. Due to equipment malfunction, con-
tinuous streamflow measurement began December 16th and con-
tinued through the cessation of flow in the summer. Early
streamflow was gap filled using a series of 3 manual measurements
and a multiple linear regression relationship between discharge at
the TL weir and other nearby weirs within the larger Dry Creek
Experimental Watershed (Kormos et al., 2014a). A total of 14 mm
of streamflow was estimated, which is 4% of the total annual
streamflow. Peaks in January, December, and March are associated
with ROS events (Fig. 7b and c). The total Q at the outlet weir for
WY2011 was 325 mm (Fig. 6b). We estimate the uncertainty in Q
at 10% based on a lookup table category of ‘‘having a stable control
structure with 8 to 12 stage-discharge measurements per year’’
(Harmel et al., 2006b), and early season gap filling (Table 3).

5.3. Soil moisture observations and simulations (h)

The soil moisture time series for WY2011 illustrates the com-
monly observed behavior described by McNamara et al. (2005),
with relatively stable wet and dry periods bounded by sharp



Fig. 6. (a) Modeled cumulative SWI from NE and SW slopes showing the timing of ROS events. (b) Cumulative modeled soil drainage to the soil bedrock interface (Drt) on NE
and SW slopes. Cumulative streamflow (Qt) is also depicted. (c) Incremental modeled daily Drt on NE and SW slopes.

Table 3
Annual water balance terms and uncertainties from WY2011 at TREELINE.

Estimate (mm) Uncertainty (mm)

Precipitation (distributed) 859 –
SWI 810 32
Soil water storage – 19
Q �325 33
ET �196 6
BI �289 50

DR �614 38
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increases and decreases (Fig. 4). Soil moisture begins at the PEL in
October and increases in response to fall rains and early snow
accumulation-melt cycles. Deep soils on the NE slope generally
reach FC in December in response to snowmelt and a ROS event.
The soil moisture values remain at or above FC until early May,
when elevated ET fluxes begin to dry the soil below FC. Spring rains
extend the time that soil moisture is elevated above the PEL, which
is reached between early July and mid-August.

Lateral flow occurs predominantly at the soil bedrock interface
as deep soil moisture increases above approximately 0.20 m3 m�3

during the December ROS event (Fig. 8). This example time period
is chosen because of suspected tipping bucket failure following this
event. Overland flow data is not included because expected errors
due to the area of the collection trough are an order of magnitude
larger than the overland flow recorded. No lateral flow was col-
lected at the trough approximately 125 cm below the soil surface.

Modeled shallow soil moisture commonly peaks higher and
flatter than measured data on the NE slope. Modeled soil moisture
at 15 cm repeatedly drops below measured data (Fig. 4).
Discrepancies between measured and modeled soil moisture are
most likely a result from errors in the timing and magnitude of
modeled SWI or mischaracterizing the soil parameters in SEM.
The slower modeled soil moisture drawdown at 100 cm is likely
a result of the assumption that the root distribution declines
exponentially with depth. High and flat modeled peak values
may be an artifact of the daily time step used in SEM. Although it
is clear that the daily time step used in the model does not accom-
modate large events, especially on moist soils, over longer time
frames the net changes in storage are reasonably accurate.

The modeled storage from SEM19 fits measured data from SU5,
SU10, and SU20 relatively well (Fig. 9). Modeled storage from SEM8
performs well during wet-up when compared to measurements at
both pits N3 and N4, but underestimates the storage from Npit3.
These discrepancies demonstrate the high variability in soil
moisture values measured over a relatively short distance. For
comparison purposes only, the soil layer depths used to calculate
modeled storage are combined to match the measured layer soil
depths at the soil pits. This allows us to use the modeled soil mois-
ture to calculate storage for thicknesses of soil at the measurement
profiles for direct comparisons. Systematic deviations between
measured and modeled soil water storage are attributed to uncer-
tainty in the LAI time series, the distribution of PEL and FC soil
parameters, or preferential flow, which allows deeper soils to
wet up quickly. Area weighted RMSE between measured and mod-
eled soil water storage for the 2 hillslopes is 19 mm.

The WY2011 total DRt is 614 mm (Fig. 6b). Cumulative DR from
the SW slope was higher through most of the snow season. In late
April, however, cumulative drainage from the NE aspect increased
due to late-season snowmelt after the SW slope was snow-free.

5.4. Modeled evapotranspiration (ET)

The WY2011 total modeled ETt calculated was 196 mm (Fig. 7c).
Since ET is not directly measured, it is difficult to estimate the
modeled ETt error. However, we attempted to estimate the uncer-
tainty in ETt using a suite of model parameter sets that define the
LAI time series. LAI time series parameter sets were obtained by
separately calibrating to each soil moisture measurement profile
(2 on the NE slope and 4 on the SW slope) during the time period
when ET was active (April 5th to July 20th). Profile SD5 was



Fig. 7. Time series of (a) catchment soil storage, (b) measured discharge and modeled soil drainage to the soil bedrock interface (Drt), and (c) calculated bedrock infiltration
(BIt) compared to modeled evapotranspiration (ETt).

Fig. 8. Lateral fluxes on the NE slope measured below the soil surface at 4 cm and 125 cm depths and at the soil bedrock interface. Soil moisture at several depths is also
included from a nearby soil profile N3.
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excluded from the ET error analysis because of suspected upslope
contributions to deep soil moisture, which is not accounted for in
SEM. We then ran a Monte Carlo simulation, were every possible
combination of parameters sets for the 2 slopes were used to run
SEM distributed across Treeline. The standard deviation in the total
modeled ETt from these runs was 6 mm. We acknowledge that this
method addresses the uncertainty in model parameters and does
not address the uncertainty in ETt due to model structure, which
we do not have sufficient data to address. However, SEM has been
shown to perform well during the late spring and summer, when
ET is the dominant soil water flux, in watersheds with similar veg-
etation and soil depths, (Seyfried et al., 2009). For the purpose of
this study, we assume that there is no error in ETt due to model
structure.

5.5. Bedrock infiltration (BI) in the annual water balance

BIWC is estimated from Eq. (8) as 289 mm, which is 34% of the
basin-averaged distributed precipitation. The uncertainty associ-
ated with this BI estimate cannot be obtained by comparing it to
direct measurements. We can, however, obtain a combined uncer-
tainty in total WY2011 BIWC from estimated uncertainty in total
Qt, SWIt, ETt and dSt. Uncertainty in SWIt and dSt are obtained by
comparing measured and modeled results, uncertainty in Qt are
obtained by best practices (Harmel et al., 2006a), and uncertainty
in ETt are obtained by Monte Carlo techniques (Table 3). If the
errors in modeled SWIt, dSt, ETt, and measured Qt are assumed to
be normally distributed and uncorrelated, a simplified error prop-
agation equation (resulting error is the square root of the sum of
the squares) can be used to estimate the error in BIWC for the
WY2011 as 50 mm. This coincides with 34% ± 12% of the dis-
tributed precipitation at 95% confidence and 34% ± 6% at 68% con-
fidence using the standard deviation of the simulations. We also
note that this estimate does not include instrument error or spatial
correlation.

However, the assumption that errors in SWIt, dSt, and ETt are
not correlated, which allows us to overlook cross correlation
terms in the error propagation equation, varies in strength
according to the state of the snowpack, ET activity, and the soil
storage state. Although errors in measured Qt are likely weakly



Fig. 9. Measured and modeled soil water storage for each of the soil profiles at the Treeline catchment. Modeled results are from the closest modeled point and modeled
depths are modified to match the measured soil depth at the soil pits for comparison.
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correlated to other errors, SWIt, dSt, and ETt are mathematically
related in the model. The assumption that errors in these vari-
ables are uncorrelated is strong at the beginning and end of the
water year, when soil moisture is at PEL and there is little SWI.
Although there is correlation between variables during wet-stable
periods, the absence of significant ET and DR will minimize errors
to BIWC.

The assumption that errors are not correlated during the time
period from April 7th (snow meltout date for south slope) to July
1st (Qt is zero and soil moisture is well below FC), when ET is active,
there is SWI, and soil is actively draining, requires more substantia-
tion. This time period has the highest potential for creating errors in
water year estimates of BIWC since ET and DR processes are occur-
ring simultaneously. For a water year estimate of BI, correlations
between SWIt, dSt, and ETt are only important when an error in
SWIt causes change in an error in ETt via changes in dSt. Although
SWIt and dSt errors are highly correlated during this time (correla-
tion coefficient = 0.98 at NE pits), errors in ETt are negligibly corre-
lated to errors in dSt. This is because, following Eqs. (17) and (18),
ETt is not soil moisture limited during this time. Simulated soil
moisture on the NE slope only briefly dips below FC. Further, during
the summer dry down, there is no modeled drainage once soil mois-
ture falls below FC. The only additional error that could be incurred
due to correlation of errors would be if errors in SWIt change either
the amount of time that the wettest soil layer is below FC, or the
magnitude of the soil moisture decline below FC. Since SWIt is mea-
sured rain opposed to modeled snowmelt during this time, errors in
that term will be minimal. In addition, ETt values tend to be low sur-
rounding times with precipitation since they tend to be cloudy and
have high relative humidity.
5.6. Timing and spatial distribution of soil drainage (DR) and bedrock
infiltration (BI)

SW slopes contribute to catchment DR more often than NE
slopes from November to mid-January and also in late February
due to a combination higher SWI and shallower soils
(Figs. 2, 6b, c, and 10b–f) (Kormos et al., 2014a,b). The magnitude
of DR is also often higher on the SW slope until mid-March, after
which the NE slope contributes more DR until early May. The SW
slope DR increases more rapidly in response to precipitation and
melt events from the onset of streamflow in early December to
mid-March (Fig. 6c). This is a result of a more limited storage
capacity (shallower soil depth) on SW slopes (Smith et al., 2011).
NE slope DR peaks higher and remains elevated longer staring
mid-March (Fig. 6c). The SW slope contributes more cumulative
DR until the beginning of April, just after the final spring melt com-
mences (Figs. 6b and 11). The NE slope contributes more DR per
area by the end of WY2011, mainly as a result of winter precip-
itation distribution (Kormos et al., 2014b).

Although we can comment on the spatial distribution of DR, it is
difficult to translate that knowledge to a spatial distribution of BI
because of lateral flow at the soil bedrock interface and the
unknown transmissive properties of that interface. The timing of
BI peaks coincides with peaks in modeled whole catchment soil
storage as well as peaks in measured Qt (Fig. 7). Negative BI cal-
culations are a result of measured Qt being greater than modeled
DRt, which occurs when Qt increases before DRt (December 14th),
Qt peaks higher than DRt (March 16th), or the Qt recession is slower
than the DRt recession (May 2nd–July 1st). Negative BI values are
simply a modeling artifact and do not infer exfiltration of water



Fig. 10. Distributed two week summed soil drainage to the soil bedrock interface (Drt) at the Treeline catchment for WY2011.

Fig. 11. Distributed cumulative drainage to the soil bedrock interface (Drt) every two weeks at Treeline during WY2011.
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from the bedrock. Faster measured Qt increases may be a result of
(1) quick flow paths that are active in Treeline, but not accounted
for in the model, such as lateral flow within the snowpack
(Eiriksson et al., 2013), overland flow, or macropore flow, (2) faster
soil water redistribution in Treeline compared to the modeled soil
water redistribution, or (3) errors in the timing of SWI calculations
from Isnobal. Slower Qt recessions occur when modeled DRt reaches
a zero value quickly after SWI events, while measured streamflow
recedes slower. The prolonged measured streamflow recession is
evidence that there is certainly a time lag associated with lateral
flow in Treeline. This is a result of lateral flow from the area of
DR taking some amount of time to get to the stream outlet. If this
time lag is greater than the model time step (1 day), it will lead to
errors in Eq. (2) when creating a BI time series (Fig. 7c). We assume
negative BI values do not affect qualitative conclusions about the
timing of BI events at time scales greater than 1 day. Negative esti-
mates of daily BI values from May 2nd to July 1st result from Qt

recession being slower than DRt recession. Discharge measured in
May could have entered the basin at any previous time step. The
discussion of the timing of BI is therefore based on the additional
assumption that these errors are distributed evenly across the
water year. We can then quantify the relative importance of hydro-
logic events in terms of BI. ROS events from December, January,
and March contribute 17% of BI, while the spring melt event on
the NE slope contributed 31%.
6. Discussion

6.1. Soil drainage and bedrock infiltration

BI was a large component of the annual water budget in
WY2011 at Treeline. Drainage to the soil bedrock interface occurs
from late October to June (Figs. 6c and 7b). This is in contrast to
higher elevation sites where DR is expected to occur only during
the spring ablation season (Murray and Buttle, 2005; Seyfried
et al., 2009). This mid elevation zone also receives greater amounts
of precipitation than rain-dominated, lower elevations because of
well-known orographic relationships. The timing and magnitude
of DR from the rain snow transition zone may make it an important
source of down slope, cold season streamflow (Knowles and Cayan,
2004). The timing of BI lines up with peaks in modeled whole
catchment soil storage, as well as peaks in measured streamflow
(Fig. 7). Large BI events coincide with ROS events in mid-
December, mid-January, and mid-March. The December ROS event
began on December 11th and extended to December 19th.
Estimated streamflow for this period rises earlier than modeled
DR, causing a negative spike in BI. This may be a result of the
gap filling methods used to estimate early streamflow (Kormos
et al., 2014a). The January ROS event begins on January 12th and
extends through January 20th. It also contains a large negative
dip in the BI record on January 17th. This is primarily a result of
modeled DR peaks not matching measured Qs (Fig. 7b inset), which
may result from errors in modeled SWI or SEM model parameters.
A ROS event occurring between March 12th and March 20th also
includes a large negative dip because the DR and measured stream-
flow peaks are offset. Although 3 ROS events occur in April, they
coincide with the spring snowmelt event on the NE slope (March
29th to May 1st). It is difficult to separate BI related to ROS events
versus ongoing snowmelt.
6.2. Performance of storage-based modeling

Lateral flow at Treeline occurs primarily at the soil bedrock
interface with little to no flow collected at the soil surface or soil
horizons (Fig. 8). This agrees with previous studies by Graham
et al. (2010). We feel that this data is sufficient to justify the use
of simplified modeling methods, including the use of a one
dimensional model with vertical flow assumptions through the soil
profile. The SEM model assumes that lateral moisture redis-
tribution, such as overland flow or lateral flow in the soil column,
is negligible. The existence of streamflow, however, implies that
lateral redistribution does indeed occur. Implicit in our approach
is the assumption that both BIWC and Qt result from partitioning
of vertical infiltration at the soil bedrock interface. While some lat-
eral redistribution of water likely occurs throughout the snow–soil
bedrock profile, close agreement of measured and modeled soil
storage (Fig. 9), and modeled DRt and measured Qt (Fig. 7) suggest
that the magnitudes of lateral fluxes are small. Further, if such lat-
eral fluxes reach the stream, they are incorporated into the total
water year estimation of BI.

In the context of hydrologic modeling methods, the capacitance
parameter approach approximates the process of redistribution
(drainage) using parameters that are: (1) of relatively low spatial
variability, (2) easily verified empirically, and (3) easily assessed
in terms of impact of estimation error (if FC is 0.01 high, then simu-
lated soil moisture will tend to be 0.01 high during the winter
months). The focus on what is retained in the soil, as opposed to
the soil water flux, has the advantage that no characterization of
macropores is needed because RDK accounts for both Darcian
and preferred flow soil drainage processes. This approach also
takes advantage of the empirically observed thresholds in mea-
sured water contents corresponding conceptually to FC and PEL
generally observed in soil water data measured the region (e.g.,
Seyfried et al., 2009; McNamara et al., 2005; Seyfried et al., 2011).

FC was initially defined as ‘‘the amount of water held in the soil
after the excess gravitational water has drained away and after the
rate of downward movement of water has materially decreased’’
(Veihmeyer and Hendrickson, 1931). The concept of FC has been
widely criticized partly because it is not appropriate for many field
conditions, such as where ground water influences water contents,
and partly because the values determined from standard lab-
oratory soil water potential values often do not match observations
in the field (Hillel, 1998; Assouline and Or, 2014). Although the
concept of FC can be ambiguous, it works well in our study area
where DR and ET seasons are fairly distinct (McNamara et al.,
2005), and field-measured values are used (e.g., Seyfried et al.,
2011; Ladson et al., 2006; Ritchie, 1981; Smith et al., 2011). The
approach has the advantages that it directly uses measured soil
water content data, which are extrapolated using soil texture infor-
mation. Soil texture is widely available and closely related to soil
water retention and of only moderate spatial variability.

The capacitance parameter approach also avoids ‘‘physically
based’’ parameters becoming ‘‘knobs’’ for tuning over parameter-
ized models partly because they are so variable in space and diffi-
cult to verify empirically. A physically based Richards equation
approach is often preferred for calculating soil water flux because
it directly simulates the processes known to universally drive soil
water movement. While this approach is clearly preferred for con-
ceptual reasons, and where soil properties are well characterized,
there are serious practical issues associated with most extensive
field applications. With the Richards equation, movement of soil
water is driven by the soil hydraulic potential gradient (h) as modi-
fied by the hydraulic conductivity (K). Two functions, h(h) and K(h)
are required. The h(h) function is rarely measured in the field and
generally estimated using pedotransfer functions that generalize
over many soils but are rarely verified on site and subject to sub-
stantial error (e.g. Saxton and Rawls, 2006; Warrick and Nielsen,
1980). The K(h) function is almost never measured in the field
and is also estimated using pedotransfer functions that are largely
based on soil texture. The function is strongly non linear and gen-
erally scaled to saturated hydraulic conductivity (Ksat), which is
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often measured in the field though usually only near the soil
surface. Unfortunately, K(h) spatial variability is extremely high
and Ksat is poorly correlated with soil texture (Kutilek and
Nielsen, 1994) leading to unknown but extremely high (orders of
magnitude) estimation errors. The hydraulic potential gradient is
rarely measured and of unknown variability but also contributes
to the largely unknowable estimation error. These issues are gener-
ally addressed by calibrating various nonlinear parameters
describing the functions. Thus, for extensive field applications,
the problem is that soil water flux is calculated using unknown
gradients modified by poorly estimated functions using an
overparameterized model (Beven, 1989).

We can directly compare our BI estimates to a chloride mass
balance estimate made at Treeline for WY2011 using the same
basin averaged distributed precipitation record used in this paper
(unpublished data following Aishlin and McNamara (2011)). This
approach estimates BI was 18% of precipitation of with a range
from 3% to 37%, which is within the range of our estimate of
34% ± 12%. Our estimate may be in the upper range of the chloride
mass balance estimate because of chloride flushing caused by mid-
winter ROS events. These events may have sufficient soil water
fluxes to flush chloride ions from previous years through the soil
profile. We additionally estimate the error in total WY2011 DRt

as the combined error in SWIt, ETt, and dSt resulting in
614 ± 38 mm (Eq. (2) (Table 3).

We cannot directly compare the BI estimate obtained in this
paper to previous published estimates because previous estimates
did not distribute snow storms based on wind. There was a differ-
ence of 76 mm between the wind-corrected and basin-averaged
redistributed precipitation for WY2011 at Treeline. However, if
we assume that the fraction of precipitation that BI accounts for
is similar independent of the precipitation correction method,
our estimate of 34% ± 12% (basin-averaged, distributed) is within
the estimates of 17–44% (wind-corrected) and 34–36% (measured
shielded) from Aishlin and McNamara (2011), and Kelleners et al.
(2010), respectively.

The similarity between our results and results obtained using
other methods suggest that the storage-centric approach
presented in this paper is a useful tool when streamflow is an
unreliable calibration target due to BI. By focusing on simulating
distributed soil moisture dynamics, we are able to estimate DR,
which includes BI and Qt. However, the method has several
assumptions and drawbacks outlined in the following paragraphs
that must be addressed.

The dominant storage reservoirs must be known and well
characterized. Treeline is small and previous work demonstrated
that snow and soil moisture storage dominate catchment response
(Williams et al., 2009), while deep saturated groundwater flow is
not important. As catchment size increases, storage mechanisms
will likely become more complex and an appropriate subsurface
model should be incorporated. Distributed SWI must be well
characterized because this approach relies on estimates of dis-
tributed soil moisture storage and drainage. This is challenging in
snow dominated catchments, necessitating physically based mod-
els driven by distributed inputs. The distribution of inputs is often
difficult to obtain. In this study, precipitation was distributed
according to empirical methods following Winstral et al. (2013)
as described in Kormos et al. (2014b). The total amount of precip-
itation received by the catchment is sensitive to the parameters
used in the wind redistribution procedure. An extensive dataset,
including 10 repeat snow surveys and 6 ultrasonic depth sensors,
was used to optimize these parameters. A minimum RMSE of
32 mm between measured and modeled snow water equivalent
was obtained with the best parameter set.

Characterizing the soil and plant properties of a basin from
point measurements is difficult given the high spatial variability
involved. FC and PEL parameters are empirically obtained from
20 soil moisture probes and at various locations and depths in a
1.5 ha catchment. SAT parameter values were calculated from soil
texture data obtained from the 57 model point locations. Even
though this is a high density of measured data, we recognize that
soil properties and soil moisture magnitudes are highly variable
over short distances (Brocca et al., 2012; Fiener et al., 2012).
Also, the placement of soil moisture probes on the SW slope is
not ideal for calculating measured soil moisture storage. Shallow
probes placed in the top 15 cm of the soil profile may be influenced
by evaporation from the soil surface when the snow disappears,
causing lower soil moisture contents in late March, even though
PET is low. Deep probes were placed at the soil–saprolite interface
and may measure soil moisture increased due to the collection of
water at that interface instead of a lower value if the soil column
was allowed to drain freely. Deep probes may also record pro-
longed elevated moisture because of the influence of lateral flow
from upslope contributing areas. The location of the deep probes
and the fact that there are only two probes in each pit (the deep
probe represents less than 50% of the calculated soil storage value)
may explain differences in measured and modeled soil water
contents.

Aspect differences in soil and vegetation are considered a
fundamental control on the hydrology of the study area (Geroy
et al., 2011; Kunkel et al., 2011; Smith et al., 2011; Tesfa et al.,
2009). Vegetation differences are accounted for in SEM by separate
LAI time series for NE and SW slopes. SW slopes have shallower soil
and abundant shrubs that are able to root well below the measured
soil depth. Calibrated LAI time series for the NE and SW slopes gen-
erally agree with vegetation studies in similar areas (Clark and
Seyfried, 2001; Flanagan et al., 2002; Flerchinger et al., 1996;
Griffith et al., 2010; Groeneveld, 1997; Ivans et al., 2006;
Steinwand et al., 2006). The LAImax values are somewhat high for
both the NE and SW slopes compared values reported in the litera-
ture. The high LAImax values may be a result of a tree adjacent to the
north soil pits and the fact that some south soil pits are close to the
valley bottom where vegetation has access to water from the drai-
nage network. Regardless of the high LAImax values, the modeled
soil dry down agrees fairly well with measured dry down (Figs. 4
and 9). Aspect associated soil differences are accounted for in this
study by having separate FC and PEL relationships with soil depth
for each aspect, varying SAT with texture data obtained from each
aspect, and having measured soil depths across the catchment.

One of the main drawbacks of utilizing the modeled DR is that
ET errors are inherited to BI (Essery and Wilcock, 1990; Scanlon
et al., 2002; Simmers, 1998). ET can be an especially large term
in semi-arid environments. SEM uses a modified Priestly–Taylor
(1972) equation that incorporates time-varying LAI (Eq. (11))
(Rose, 1984; Seyfried, 2003) and available soil moisture
(Shuttleworth and Maidment, 1992). Potential errors are assumed
to be low in the winter, when temperatures are low and snow
cover inhibits significant ET. Errors are expected to increase for
much of April, when the soil moisture content is above FC
(Figs. 4 and 9), snow cover is absent (Fig. 3a), and modeled ET is
increasing (Fig. 7c) (Blankinship and Hart, 2012; Willmott et al.,
1985).
7. Conclusions

Bedrock infiltration from Treeline for the WY2011 is estimated
as 298 mm ± 50 mm or 34% ± 12% of catchment average
distributed precipitation. Both ROS and the spring melt contribute
significantly to the total BI for WY2011. Large BI events coincide
with ROS events in mid-December, mid-January, and mid-March.
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The SW slope drains more often throughout WY2011, but the NE
slope contributes a greater total magnitude of DR.

The widely applicable modeling approach for estimating BI
described in this paper focuses on a high degrees of similarity
between measured and modeled soil water storage. The choice of
hydrologic model or models used to distribute SWI and account
for subsurface dynamics needs to be well suited to the specific
study site. In this study, using loosely coupling Isnobal and SEM
worked well. Complex snow accumulation and melt dynamics
warrant the use of a distributed physically based snow model,
while relatively simple catchment soil properties allow us to use
a capacitance based soil model to represent catchment soil
dynamics. The agreement between the timing of measured dis-
charge peaks and modeled soil outflow peaks is verification that
the model performs well. The benefits of using SEM include a lim-
ited number of conceptually-tangible parameters leading to a rela-
tively quick setup time and limited computational expense.
However, these models, which neglect the time lag from soil drai-
nage to streamflow, are expected to lead to degraded performance
with increasing catchment size. The simplified approach described
here may provide a good estimate of the timing and magnitude of
recharge events at larger scales. Recharge estimates for larger
basins with regional groundwater influences should consider a
more complex model that represents the important hydrologic
processes of that basin.
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