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Modeling Runoff  GeneraƟ on 
in a Small Snow-Dominated 
Mountainous Catchment
Snowmelt in mountainous areas is an important contributor to river water fl ows in the 
western United States. We developed a distributed model that calculates solar radiaƟ on, 
canopy energy balance, surface energy balance, snow pack dynamics, soil water fl ow, 
snow–soil–bedrock heat exchange, soil water freezing, and lateral surface and subsurface 
water fl ow. The model was applied to describe runoff  generaƟ on in a subcatchment of the 
Dry Creek Experimental Watershed near Boise, ID. CalibraƟ on was achieved by opƟ miz-
ing the soil water fi eld capacity (a trigger for lateral subsurface fl ow), lateral saturated 
soil hydraulic conducƟ vity, and verƟ cal saturated hydraulic conducƟ vity of the bedrock. 
ValidaƟ on results show that the model can successfully calculate snow dynamics, soil water 
content, and soil temperature. Modeled streamfl ow for the validaƟ on period was under-
esƟ mated by 53%. The Ɵ ming of the streamfl ow was captured reasonably well (modeling 
effi  ciency was 0.48 for the validaƟ on period). The model calculaƟ ons suggest that 50 to 
53% of the yearly incoming precipitaƟ on in the subcatchment is consumed by evapotrans-
piraƟ on. The model results further suggest that 34 to 36% of the incoming precipitaƟ on is 
transformed into deep percolaƟ on into the bedrock, while only 11 to 16% is transformed 
into streamfl ow.

AbbreviaƟ ons: EF, modeling effi  ciency; LAI, leaf area index; SWE, snow water equivalent; TDR, Ɵ me do-
main refl ectometry.

Runoff  due to snowmelt from mountainous catchments is an important source of 
water in the western United States. It may also pose a hazard, as localized spring fl ooding 
is not uncommon. Th e quantity and timing of the runoff  depend on a large number of 
interacting factors. Th ese factors are related to climate, topography, subsurface morphol-
ogy, and vegetation. Recent studies have highlighted the fact that watershed soils need to 
cross a certain wetness threshold before water inputs due to rainfall or snowmelt generate 
streamfl ow (Buttle et al., 2004; Tromp-van Meerveld and McDonnell, 2006). Exceeding 
this threshold causes the watershed to become laterally connected, allowing rapid water 
fl ow from the watershed to the stream (Seyfried et al., 2009). Th e threshold behavior may 
be particularly important in semiarid areas that undergo large fl uctuations in soil water 
storage during the year (McNamara et al., 2005).

Direct measurement of the variables that are involved in runoff  generation is usually 
limited to only a few locations. Hydrologic models can provide the framework for ana-
lyzing the runoff  processes in more detail (Singh and Frevert, 2002). Parameterization 
of watershed models has traditionally been problematic due to the large number of 
parameters involved and due to the spatial variability in many of these parameters; 
however, recent developments in sensor technology and parameter optimization have 
considerably improved our ability to calibrate hydrologic models (Vrugt et al., 2003; 
Robinson et al., 2008).

Hydrologic models have been used to study runoff  generation from individual hillslopes, 
small catchments, and complete river basins. Distributed modeling approaches have 
become popular as computing power has increased because these models quantify the 
processes in a spatially explicit manner (Beven, 1989; Ivanov et al., 2004). Th e detail of the 
modeled processes generally decreases as the spatial scale for which the model is intended 
increases. A comprehensive overview of existing distributed hydrologic models can be 
found in Kampf and Burges (2007).

A new distributed model was devel-
oped for calculating vertical and 
lateral water and heat exchange in 
complex terrain. Model results for 
a small catchment near Boise, ID, 
showed that 11 to 16% of incoming 
yearly precipitation is transformed 
into streamfl ow, compared with mea-
sured values that ranged between 14 
and 34%.
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Interception of precipitation by plant canopies and root water 
uptake can have an important impact on soil moisture status and 
hence runoff  generation. Th e eff ect of vegetation on the surface 
energy balance and on the soil water balance is usually repre-
sented in a simplifi ed manner in hydrologic models. Examples of 
hydrologic models with a relatively detailed vegetation parameter-
ization can be found in Wigmosta et al. (1994, 2002) and Kavvas 
et al. (1998, 2004). Land surface models developed by the climate 
science community generally have more elaborate vegetation 
parameterizations but lack the ability to calculate lateral surface 
and subsurface water fl ow (Dickinson et al., 1993; Bonan, 1996; 
Oleson et al., 2004).

Snow accumulation and snowmelt also have a signifi cant impact on 
the surface energy balance and the soil water balance, especially in 
snow-dominated systems. Many hydrologic models treat snow in a 
simplifi ed manner. Th e snowpack is represented by a single layer 
(Downer and Ogden, 2004), two layers (Wigmosta et al., 2002), or 
three layers (Kavvas et al., 2004). In reality, snow is made up of mul-
tiple layers, with each layer having its own thickness, snow grain size, 
density, water content, and energy content. Specialized snow physical 
algorithms as developed by Anderson (1976), Jordan (1991), and Dai 
and Zeng (1997) facilitate a more realistic parameterization of snow 
(Oleson et al., 2004). Soil water freezing, which may be important 
during cold periods with thin or nonexistent snowpack, is generally 
ignored in distributed hydrologic models.

For this study, we developed a distributed hydrologic model by com-
bining an algorithm for one-dimensional vertical water fl ow and 
heat transport developed by Kelleners et al. (2009) with relatively 
simple lateral surface and subsurface water fl ow routines. Th e one-
dimensional model provides a detailed description of the water and 
energy fl uxes through vegetation, snow, soil, and bedrock for each 
grid cell in the distributed model. We hypothesize that a detailed 
physical representation of vegetation and snow is important to 
describe runoff  generation in snow-dominated mountainous terrain. 
Th e model is a considerable departure from most existing hydrologic 
models where the main emphasis is on the lateral water fl ow pro-
cesses instead of on the vertical water and heat exchange processes 
(e.g., Kampf and Burges, 2007). Th e specifi c objectives of the study 
were to: (i) develop a computer model that describes vertical water 
and heat exchange as well as lateral surface and subsurface water 
fl ow in snow-dominated mountainous catchments; and (ii) apply 
the model to a small mountainous catchment to quantify runoff  
generation in a snow-dominated system.

 Model DescripƟ on
Digital elevation data are used to divide the catchment into grid cells 
of 10 by 10 m and to determine the slope, aspect, and surface area of 
each cell. Th e 10-m grid size is a good compromise between spatial 
resolution and data volume for hydrologic simulations in areas with 
moderate to steep slopes (Zhang and Montgomery, 1994). Th e soil 

and the underlying bedrock within each cell are discretized vertically 
to facilitate the numerical solution of vertical water fl ow and heat 
transport equations. Lateral surface and subsurface fl ow are incorpo-
rated in a simplifi ed manner using sink–source terms in the vertical 
soil water fl ow equations. Th e sink–source terms are calculated using 
water potentials from the previous time step. Streamfl ow is not cal-
culated explicitly. Instead, surface ponding at the catchment outlet 
due to incoming surface runoff  and saturation of the outlet grid cell 
is simply removed from the model and classifi ed as streamfl ow. Th e 
outer boundary of the fl ow domain is treated as a no-fl ow bound-
ary. Th is implies that hyporheic fl ow is not considered at the outlet.

Vegetation is characterized by specifying vegetation height, leaf 
area index, stem area index, and soil cover. Stomatal conductance 
is calculated as a function of net incoming visible solar radiation 
and soil water pressure head. A uniform rooting system is assumed 
that covers the entire soil depth. Snow accumulation is accounted 
for by using a multilayer algorithm based on the work of Jordan 
(1991). Th ickness, density, and grain diameter are calculated as 
a function of time for all individual snow layers. For each grid 
cell, separate energy balance calculations are conducted for the 
vegetation and the ground surface (soil or snow) by solving for leaf 
temperature and ground surface temperature. Ground albedos for 
soil without snow are calculated from the soil color class, topsoil 
water content, and wavelength. Ground albedos for snow-covered 
surfaces are determined by snow soot content, snow grain radius, 
wavelength, and illumination angle.

Meteorological input data such as precipitation, temperature, relative 
humidity, wind speed, and cloudiness are the main model drivers. 
Time stepping is 15 min except for the soil water fl ow calculations, 
which may use smaller time steps. Details on the parameterization 
for stand-alone grid cells are given in Kelleners et al. (2009), who 
calculated vertical water and energy exchange for a single point in 
the landscape. In this study, we focused primarily on the lateral water 
and energy exchange components that were combined with the point 
model to obtain a distributed model that can calculate water and 
energy exchange in complex terrain.

Surface Energy Balance in Complex Terrain
To calculate the vegetation and ground surface energy balance for 
each grid cell in complex terrain, we modifi ed the calculations for 
short- and longwave radiation. Th e blocking of direct incoming solar 
radiation by the surrounding terrain is incorporated in the catchment 
model using the algorithm of Dozier and Outcalt (1979). First, a set 
of horizon angles are generated by calculating the vertical angle from 
the specifi ed point to every other point in the grid whose elevation 
is greater. Next, the terrain that surrounds each grid cell is divided 
into sectors and a maximum horizon angle is identifi ed for each sector. 
Th ese calculations are conducted only once at the start of each model 
run. Subsequently, the appropriate sector for each time step is selected 
based on a comparison with the current solar azimuth angle. Finally, 
direct incoming solar radiation to a particular grid cell is considered 
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blocked when the solar altitude angle is smaller than the maximum 
horizon angle for that cell, given the selected sector.

Incoming direct and diff use solar radiation due to refl ection 
from the surrounding terrain (Idirr and Idifr, respectively) are 
estimated as

( ) ( ) ( )( )dirr dir g 1I I Vμλ = λ α λ −  [1a]

( ) ( ) ( )( )difr dif g 1I I Vλ = λ α λ −  [1b]

where Idir and Idif are the direct and diff use radiation on a horizon-
tal surface, g

μα  and gα  are the catchment-average ground albedos 
for direct (superscript μ) and diff use radiation, λ is the wavelength, 
and V is the view factor, calculated as

2

s
cosV

n

⎛ ⎞β ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑  [2]

where β is the maximum horizon angle of a particular sector and 
ns is the number of sectors for each grid cell. Th e view factor can be 
interpreted as the fraction of open sky seen by the grid cell, i.e., that 
part of the horizon that is not blocked by the surrounding terrain 
(Muneer, 1997). Th is factor is also used to reduce the amount of 
incoming diff use solar radiation and incoming longwave radiation 
from the sky for grid cells that are surrounded by higher ground. 
Finally, the relative contributions of the sky and the surrounding 
terrain to net longwave radiation at the ground surface, Lng, are 
approximated using (Marks and Dozier, 1979)
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where ε is emissivity, β is absorptivity, σ is the Stefan–Boltzmann 
constant, i is ground surface slope angle, T is absolute temperature, 
and subscripts a and g stand for air and ground, respectively. In 
using Eq. [3], we assumed that the surrounding terrain (second 
term on the right side) has the same temperature as the point under 
consideration and that vegetation does not interfere with this por-
tion of the incoming longwave radiation. No modifi cations were 
made in the sensible and latent heat fl ux calculations for each grid 
cell as presented in Kelleners et al. (2009).

Water Flow
Vertical soil water fl ow for each grid cell is calculated using a non-
iterative solution to Richards’ equation. Th e water balance for each 
vertical element i can be written as (aft er Ross, 2003)

0 0w
1 root, subn,

1,...,

F Fi
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+
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= − − ±
Δ

=
 [4]

where d is the element thickness, θw is the volumetric soil water 
content, t is time, q is the vertical soil water fl ux at a fraction F 
through the time step, Sroot is a sink term due to root water uptake, 
Ssubn is a sink–source term due to net subsurface lateral soil water 
fl ow, and N is the number of soil elements (numbering from the 
bottom up). Both Sroot and Ssubn are evaluated at the beginning of 
the time step (superscript 0). Th e fl ux q at fraction F through the 
time step is estimated using a Taylor series expansion:
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where u is either θw (unsaturated layer) or the soil water pressure 
head h (saturated layer, where Δθw = 0). Th e soil water fl ux at the 
beginning of the time step is calculated using the Darcy equation:
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 [6]

where K is the soil hydraulic conductivity and z is the vertical 
coordinate. Th e derivatives of the soil water fl ux at the beginning 
of the time step in Eq. [5] can be obtained by diff erentiating the 
Darcy equation with respect to either θw or h. An additional bal-
ance equation for pond height, h0, is included if ponding occurs 
on the soil surface (aft er Ross, 2003):
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F Fh

q q S h
t

Δ
= − ±

Δ
 [7]

where qtop is the net incoming water fl ux from precipitation and 
surface evaporation (no snow) or snowmelt, qsurf is the vertical fl ux 
at the soil surface, and Ssurfn is the sink–source term due to net 
incoming and outgoing surface runoff . Th e surface fl ux is again 
estimated using a Taylor series expansion:
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Th e surface fl ux at the beginning of the time step is
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Incoming surface runoff  into a grid cell without a ponding layer 
is accommodated by incorporating Ssurfn into the water balance 
equation for the top soil element. Th e sink terms Ssurf and Ssub that 
are used to calculate the net lateral surface and subsurface fl uxes 
for each individual grid cell are given by
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where f1 is the fraction of surface runoff  or subsurface lateral fl ow that 
moves to the jth neighboring grid cell, f2 is the fractional contribution 
of the ith soil layer to subsurface lateral fl ow, Qsurf is the surface runoff  
for the cell under consideration, Qsub is the subsurface lateral fl ow for 
the cell under consideration, and A is the area of the grid cell. Only 
saturated soil layers generate and receive lateral subsurface fl ow in the 
model. Th ese saturated layers are identifi ed from the bottom up so that 
isolated saturated soil layers near the surface are not involved in the 
lateral exchange. Th e fi rst unsaturated soil layer from the bottom with 
θfc < θw  + θi < φ is considered partially saturated, where θfc is the fi eld 
capacity, θi is the ice content, and φ is the porosity. Th e contribution 
ΔH to the total saturated height H of this single partially saturated 
layer is calculated as

w i fc
w i fc

fc

i i
i i iH d
θ + θ −θ

Δ = θ + θ > θ
φ−θ

 [11]

All incoming lateral subsurface fl ow is directed to the bottom soil 
layer of a grid cell if no saturated layer exists. Th e concept of a single 
partially saturated layer possibly contributing to lateral subsurface 
fl ow is included to allow lateral fl ow through unsaturated soil pro-
fi les in steep terrain. Th is type of lateral fl ow can be switched off  by 
setting θfc equal to φ. Th e fractions f1 are determined by dividing 
the water level elevation diff erences between the current grid cell 

and its neighbors by the respective horizontal distances. As a result, 
most of the lateral fl ow will move in the direction of the steep-
est descent. Th e water level elevation for surface ponding water is 
the sum of the soil surface elevation and the ponding depth. Th e 
water level elevation for saturated soil layers is equal to the soil 
surface elevation − soil depth + H. Th e fractions f2 are calculated 
by assuming that the contribution of each saturated soil layer to 
lateral fl ow is proportional to the ratio of its saturated thickness 
to H. Th e surface runoff  Qsurf is calculated using the Manning 
equation for overland fl ow (Hillel, 2004):

( )5/3 1/2 0
surf 0 sink h A

Q w h i
n t

= ≤
Δ

 [12]

where w is the grid cell width, k is 1 m1/3 s−1, and n is the dimen-
sionless roughness coefficient. Lateral subsurface f low Qsub is 
calculated using the kinematic approximation (Beven, 1981; 
Kampf and Burges, 2007):

( )
( )fc

sub s sin
H A

Q wK H i
t

φ−θ
= ≤

Δ
 [13]

where Ks is the lateral saturated soil hydraulic conductivity. Th e 
calculated values for Qsurf and Qsub are both limited to the amount 
that is actually available for lateral fl ow to avoid overdraft .

Th e soil water fl ow calculations are initiated by specifying the soil 
water content and soil ice content as a function of depth for each 
grid cell. Equations [4] and [7] are solved simultaneously when 
surface ponding occurs (for details, see Ross, 2003; Kelleners et 
al., 2009). Th e upper boundary is always described by a fl ux condi-
tion. Th is fl ux is determined by the diff erence between rainfall and 
evaporation (no snow) or by the melt fl ux from the bottom snow 
layer. Th e bottom boundary is ill defi ned in most mountainous 
terrain due to uncertainty about the exact fl ow conditions at the 
soil–bedrock interface. Downward percolation fl ux, qdp, into the 
bedrock is calculated using the following approximation:

sr
dp

0

0 0

H D
K H

q D
H

⎧ +⎪⎪ >⎪= ⎨⎪⎪ =⎪⎩

 [14]

where Ksr is the vertical saturated hydraulic conductivity of the 
bedrock and D is the thickness of the upper portion of the bed-
rock that is assumed saturated during deep percolation events. 
Both Ksr and D are essentially unknowns. In this study, we fi xed 
D to 0.2 m and treated Ksr as a fi tting parameter. No detailed 
bedrock water fl ow is calculated by the model and downward per-
colation across the soil–bedrock interface is simply removed from 
the model and classifi ed as deep percolation. Th e above equations 
result in a tri-diagonal system of equations for each grid cell that 
is solved using the Th omas algorithm (Press et al., 1992). No 
iteration between grid cells is required because all lateral water 
fl uxes are known at the start of the time step.

Fig. 1. Surface elevation contours and instrumentation locations for 
the 0.0141-km2 subcatchment of the Dry Creek Experimental Water-
shed near Boise, ID.
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Heat Transport
Vertical heat transport in the snow–soil–bedrock continuum is 
described using the following general equation for heat conduc-
tion and advection:

( ) ( )v
v,w v,w root

qTC T T
C C S T

t z z z
∂⎛ ⎞∂ ∂ ∂ ⎟⎜= κ + −⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂ ∂

 [15]

where Cv is the volumetric heat capacity, T is the temperature, 
and κ is the thermal conductivity. Th e subscript w denotes liquid 
water. Th e possible presence of ponded water on the soil surface is 
ignored in the vertical heat transport calculation. Also, no lateral 
heat transport is calculated. Th e eff ect of these simplifi cations on 
the calculated heat transport is limited because the surface pond 
height is generally small and because most lateral heat transport 
takes place during the snowmelt season when water is close to 0°C, 
advecting little heat. Heat transport is initialized by specifying snow, 
soil, and bedrock temperatures. Th e top boundary is either the snow 
surface or the soil surface and is described by a heat fl ux condition 
as determined by the surface energy balance. Th e bottom boundary 
for heat transport is specifi ed at some depth in the bedrock. Here a 
constant temperature is prescribed, representing the annual average 
air temperature in the area (e.g., Slagstad et al., 2008). Th e resulting 
tri-diagonal system of equations for heat transport in each grid cell 
is solved using the Th omas algorithm.

Snow and soil water phase change from liquid water to ice is cal-
culated aft er the soil water fl ow and heat transport calculations 
are completed. Th e liquid water–ice phase change in a snow layer 
depends on the layer temperature and on the net incoming heat 
fl ux. In the soil, the energy state of the liquid water also plays a 
role. Capillary forces and dissolved ions reduce the energy state 
of the soil water, resulting in freezing temperatures below 0°C. 
Th e procedure is based on the work of Oleson et al. (2004) and is 
explained in detail in Kelleners et al. (2009). Soil and snow water 
vapor transport is not included in the model.

 Materials and Methods
Study Area
Th e model was applied to a 0.0141-km2 subcatchment of the Dry 
Creek Experimental Watershed near Boise, ID (Fig. 1). The sub-
catchment elevation ranges from 1600 to 1645 m above sea level. Th e 
summers are hot and dry. Winters are cold, with a persistent snowpack 
from around early November through March or April. Approximately 
half of the average annual precipitation of 570 mm falls as snow. Soils 
typically contain a signifi cant coarse fraction (>2 mm) and classify as 
gravelly sand, loamy sand, and sandy loam. Th e soils vary in thickness 
from a few centimeters to about 1 m and are formed from weather-
ing of the underlying granitic intrusion, called the Idaho Batholith. A 
network of fractures in the bedrock enables deep percolation when 
the soil–bedrock interface is wet (Miller et al., 2008). Th e vegetation 
consists of sagebrush (Artemisia tridentata Nutt.), forbs, and grasses 

(Williams, 2005; McNamara et al., 2005). Slopes of up to 60% are 
found in the subcatchment.

Th e monitoring program in Dry Creek began in 1999. Th e subcatch-
ment is equipped with a small meteorological station that measures 
precipitation, barometric pressure, air temperature, relative humid-
ity, wind speed, wind direction, and incoming solar radiation. Snow 
depth on the northeast- facing slope is measured hourly using a Judd 
ultrasonic depth sensor (Judd Communications, Salt Lake City, UT). 
Soil water content as a function of depth is measured using CS615 
water content refl ectometers (Campbell Scientifi c, Logan, UT) and 
time domain refl ectometry (TDR100, Campbell Scientifi c, Logan, 
UT). Th e CS615 sensors are installed in two pits on the northeast-
facing slope. Th e TDR100 waveguides are installed along two parallel 
transects perpendicular to the ephemeral stream, covering both the 
northeast- and southwest-facing slopes. Soil temperature as a func-
tion of depth is measured using thermocouples in the same two pits 
that contain the CS615 sensors. Streamfl ow is measured using three 
weirs at 10, 50, and 70 m from the outlet of the subcatchment. Th e 
stage of the weirs is monitored using pressure transducers. Measured 
streamfl ow varies little between weirs and only data of the weir at 10 
m from the outlet was used in this study.

Th e CS615 sensors were calibrated using manual readings from colo-
cated TDR waveguides (Chandler et al., 2004). Th e TDR sensor 
readings were converted to soil water content using the relationship 
of Topp et al. (1980) for high-frequency TDR systems. In this study, 
we used only data from the CS615 sensors and thermocouples in one 
pit on the northeast-facing slope. Th e CS615 sensors in this pit (Pit 
100 of McNamara et al., 2005) are installed at 5-, 10-, 30-, 60-, and 
100-cm depths. Th e thermocouples are installed at 5, 15, 30, 60, and 
100 cm. Th e use of TDR transect data was limited to one location on 
the southwest-facing slope. Waveguides at this location (designated 
SU20) are installed at 12- and 34-cm depths. A snow survey was con-
ducted on 10 Feb. 2004 covering 57 points across the subcatchment 
using a snow tube. Th e resulting snow height and snow water equiva-
lent (SWE) data were used for model validation.

Modeling Setup
Th e subcatchment was partitioned into 141 grid cells of 10 by 10 m 
using digital elevation data. Measured soil depths in the subcatch-
ment ranged between 0.21 and 1.25 m (Williams, 2005), resulting 
in an average soil depth of 0.48 m. Interpolated soil depths for each 
of the 141 model grid cells were discretized into seven layers of equal 
thickness. Th e underlying bedrock was discretized using fi ve layers of 
equal thickness up to a depth of 10.45 m below the soil surface. Th e 
relatively coarse vertical discretization was a compromise between 
the computational burden and the model’s ability to represent real-
istic subsurface moisture and temperature profi les. Th e relatively 
thick subsurface used was important to account for the dampening 
eff ect of the bedrock heat storage on the seasonal soil temperature 
variations. Th e prescribed constant temperature in the bedrock at 
10.45-m depth was 8.5°C.
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Two full years were simulated for which a relatively complete data set 
was available using a basic time step of 15 min. Th e period of 25 Aug. 
2000 to 24 Aug. 2001 served as the calibration period. Th e period of 
20 Aug. 2003 to 19 Aug. 2004 served as the validation period. Both 
periods started in August because of the relatively well-defi ned con-
ditions during this month. By the end of August, the growing season 
is ending, soil water storage is depleted, and soil temperature is near 
its annual maximum. Also, it is safe to assume that there is no snow 
accumulation and that the soil ice content is zero. Preparation of 
the model input data describing the general atmospheric conditions 
and the meteorological driver variables is discussed in Kelleners et al. 
(2009). Measured incoming solar radiation was not used directly in 
the model. Instead, the solar radiation data were used to determine 
the cloudiness at 15-min intervals. Th e cloudiness information was 
then used to calculate the incoming solar radiation for each grid 
cell individually.

Vegetation in the subcatchment consisted mainly of sagebrush, 
forbs, and grasses. Th e presence of a number of scattered trees 
was ignored in the model. A constant vegetation height of 0.4 
m was used. Measured vegetation soil cover (SCm) in the catch-
ment during the summer growing season varied between 0.05 and 
1 (Williams, 2005). Th e maximum leaf area index LAImax, the 

minimum leaf area index LAImin, and the stem area index SAI of 
a single average plant in the catchment were estimated at 2.3, 0.2, 
and 0.2, respectively. In principle, bare areas and vegetated areas 
can be treated separately by the model; however, this is probably 
not appropriate when the bare and vegetated areas are closely inter-
spersed such as at our catchment. Instead, we chose to consider 
the entire catchment as vegetated (SC = 1), with adjusted LAImax, 
LAImin, and SAI values for each of the 141 model grid cells of 
2.3SCm, 0.2SCm, and 0.2SCm, respectively. Th e actual LAI for 
each cell was assumed to be a function of the depth-average soil 
temperature (Dickinson et al., 1993):

( ) ( )
min

2
max min soil

LAI LAI

LAI LAI 1 0.0016 25 T

=
⎡ ⎤+ − − −⎢ ⎥
⎣ ⎦

 [16]

where Tsoil is the soil temperature (°C). Plant optical properties and 
plant aerodynamic parameters used in the vegetation energy balance 
calculations for each grid cell were represented by parameters for the 

“broadleaf evergreen shrub–temperate” plant functional type as given 
by Oleson et al. (2004). Initial soil water content, soil temperature, and 
bedrock temperature were approximated by running the model twice, 
fi rst with estimated initial values and then with initial values derived 
from the fi nal calculated values from the fi rst run.

Model CalibraƟ on
During model calibration it was assumed that the soils are hori-
zontally and vertically homogeneous throughout the catchment 
and that the bedrock parameters Ksr and D (Eq. [14]) do not vary 
in space. Th e Brooks and Corey (1964) parameters describing the 
soil hydraulic properties were taken from Kelleners et al. (2009), 
who calibrated the one-dimensional point model for the north-
east-facing slope of the catchment. Th e current model calibration 
focused on parameters that describe lateral subsurface water fl ow 
and deep percolation. Th e calibrated parameters are the fi eld capac-
ity θfc (a trigger for lateral subsurface fl ow), the lateral saturated 
soil hydraulic conductivity Ks (Eq. [13]), and the vertical saturated 
hydraulic conductivity of the bedrock Ksr (Eq. [14]). Th e surface 
roughness n for overland fl ow was not calibrated because overland 
fl ow is rarely observed on the hillslopes in the catchment. Instead, 
a constant value of n = 0.13 was selected, representative of overland 
fl ow across vegetated surfaces (Dingman, 2002). No surface energy 
balance, vegetation, snow, or subsurface heat transport parameters 
were calibrated.

Th e optimum parameter values for θfc, Ks, and Ksr were obtained by 
inverse modeling of the calibration period using the global param-
eter optimization soft ware MCS (Huyer and Neumaier, 1999). Th e 
objective function for the parameter optimization consisted of 
streamfl ow data from the weir at 10 m from the outlet (measured 
at 15-min intervals) and profi le-average soil water content data 
from Pit 100 on the northeast-facing slope (measured at hourly 
intervals). Th e likelihood of fi nding unique parameter values was 

Fig. 2. Measured and calculated streamfl ow for the weir at 10 m from 
the outlet of the subcatchment for the calibration period.

Fig. 3. Measured and calculated profi le-average soil water content for Pit 
100 on the northeast-facing slope of the subcatchment for the calibra-
tion period.
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increased by combining diff erent data types in the objective func-
tion. Th e objective function Φ was written as

( ) ( )22
stream stream* *i ij i i jv Q Q vΦ= − + θ −θ∑ ∑  [17]

where Qstream is the measured (asterisk) and calculated (no asterisk) 
streamfl ow, θ  is the measured (asterisk) and calculated (no asterisk) 
profi le-average soil water content, and v is a weighting coeffi  cient 
that accounts for diff erences in absolute values and number of data 
points between data types (Clausnitzer and Hopmans, 1995):

21j j jv N= σ  [18]

where N is the number of data points and σ2 is the measurement 
variance. Th e model calibration and validation were evaluated using 
graphical comparisons and modeling statistics. Two generally recom-
mended statistical model indicators were used, RMSE and modeling 
effi  ciency (EF) (Loague and Green, 1991; Vanclooster et al., 2000; 
Fernandez et al., 2002). Th e RMSE statistic gives the percentage of 
overestimation or underestimation of the predicted value compared 
with the mean observed value. Th e EF statistic indicates the degree to 
which the predictions give a better estimate of the observations than 
the mean of the observations (Fernandez et al., 2002). Th e maximum 
value for EF is 1. If EF is <0, the model-predicted values are worse than 
simply using the observed mean (Loague and Green, 1991).

 Results and Discussion
Model CalibraƟ on Results
Th e measured and calculated streamfl ow is shown in Fig. 2 (RMSE 
= 81%, EF = 0.11). Th e fi gure shows that the overall dynamics of 
the system are captured reasonably well by the model. Th e low EF 
= 0.11 for the streamfl ow is disappointing. Close examination of 
Fig. 2 shows that most of the discrepancies between measured and 
calculated values occur toward the end of the runoff  season in late 
April. Measured streamfl ow is still considerable during this period 
while calculated streamfl ow has ceased. Th is discrepancy may be due 
to input data limitations and model limitations. Input limitations 
include sparse soil depth data (57 points for 141 grid cells) and sparse 
soil water retention data (one sample). Model limitations include 
the assumption of purely Darcian fl ow, the assumption of a sharp 
soil–bedrock interface, and the assumption of all deep percolation 
into the bedrock being lost from the catchment. Interconnected soil 
macropores may result in rapid soil water fl ow toward the stream. 
In addition, part of the water that percolates into the bedrock may 
still reach the stream, especially if the upper part of the bedrock is 
weathered. Inaccuracies in the amount and timing of water input 
from snowmelt may also explain some of the discrepancy between 
the measured and calculated streamfl ows. Th e distinct peak in the 
calculated streamfl ow on 25 March is due to a rain-on-snow event.

Fig. 4. Measured and calculated streamfl ow for the weir at 10 m from 
the outlet of the subcatchment for the validation period.

Fig. 5. Measured and calculated snow depth, profi le-average soil water 
content, and profi le-average soil temperature for Pit 100 on the northeast-
facing slope of the subcatchment for the validation period.

Table 1. Yearly water balance for the calibration and validation periods 
for the subcatchment.

Water balance term Calibration Validation

—————————  mm ————————— 

Precipitation 590 716

Evapotranspiration 311 357

Deep percolation 215 240

Streamfl ow 64 113

Change in soil water storage 0 6
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Th e measured and calculated profi le-average soil water content for 
Pit 100 is shown in Fig. 3 (RMSE = 15%, EF = 0.88). Th e EF 
= 0.88 is excellent for the profi le-average soil water content for 
Pit 100. Th e fi ve characteristic soil moisture periods ([i] summer 
dry; [ii] fall wetting; [iii] winter wet—low fl ux; [iv] spring wet—
high fl ux; [v] late spring drying) are clearly captured by the model 
(McNamara et al., 2005). Th e good fi t between the measured and 
calculated values is not surprising given the fact that Pit 100 data 
were used to optimize the Brooks–Corey hydraulic parameters for 
vertical soil water fl ow on the northeast-facing slope by Kelleners 
et al. (2009). Th e resulting hydraulic parameters were used for all 

grid cells in this study. Figure 3 also shows that no signifi cant soil 
water freezing occurs in Pit 100. Th e calculated maximum ice con-
tent θ i for Pit 100 is 0.05 cm3 cm−3 for the topsoil layer (results 
not shown).

The MCS optimized parameter values are θ fc = 0.213, Ks = 
19.7 m d−1, and Ksr = 0.0027 m d−1, resulting in an objective func-
tion value Φ = 0.538. Th e optimized value for θfc is well below the 
value for porosity, φ = 0.339. Th is seems to confi rm that lateral 
unsaturated soil water fl ow is an important mechanism for the 
steep slopes in the catchment, as suggested earlier. Th e saturated 
soil hydraulic conductivity for lateral soil water fl ow, Ks = 19.7 m 
d−1, is higher than expected. For comparison, the value of the satu-
rated hydraulic conductivity for vertical soil water fl ow that was 
used is 0.3867 m d−1. Th e resulting anisotropy factor of 51 seems 
unrealistic for the relatively coarse and relatively homogeneous 
soils in the catchment. Th e high optimized value for Ks may refl ect 
the infl uence of soil macropores and bedrock fl ow paths, which 
result in non-Darcian preferential fl ow when activated under wet 
conditions. Th e optimized value for Ksr = 0.0027 m d−1 is diffi  cult 
to judge because its value depends on the choice for the saturated 
thickness of the bedrock, D, which was assumed to be 0.2 m in this 
study. Using only streamfl ow data in the MCS parameter optimi-
zation did not signifi cantly alter the optimized values for θfc, Ks, 
and Ksr (results not shown).

Fig. 6. Measured and calculated profi le-average soil water content for 
time domain refl ectometry transect location SU20 on the southwest-
facing slope of the subcatchment for the validation period.

Fig. 7. Measured vs. calculated snow depth and snow water equivalent 
(SWE) for 57 points across the subcatchment on 10 Feb. 2004 of the 
validation period. Points are on the northeast-facing slope (NE), south-
east-facing slope (SE), and southwest-facing slope (SW).

Fig. 8. Calculated transpiration rates for the Pit 100 and SU20 locations 
for the validation period. Values are averages across a grid cell.
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Th e calculated water balance for the calibration period is summa-
rized in Table 1. Th e calculated streamfl ow of 64 mm constitutes 
only 11% of the total incoming precipitation into the catchment of 
590 mm (rain and snow). For comparison, the measured streamfl ow 
for the calibration period was 80 mm, or about 14% of the total 
incoming precipitation. Th e model results for the calibration period 
suggest that more water leaves the catchment through deep perco-
lation into the bedrock than through streamfl ow (215 vs. 64 mm, 
respectively). Evapotranspiration is the most eff ective process for 
removing water from the catchment (311 mm, or 53% of total 
incoming precipitation). Th e water balance results generally agree 
with the results of Aishlin and McNamara (unpublished data, 2009), 
who used a Cl− mass balance approach to show that from 2004 to 
2008, 49% of precipitation in the subcatchment went to deep per-
colation and 11% to streamfl ow.

Model ValidaƟ on Results
Measured and calculated streamflow for the validation period is 
shown in Fig. 4 (RMSE = 140%, EF = 0.48). Small measured stream-
fl ow events in January were not captured by the model. Th e timing of 
the main runoff  between mid-February and early April was described 
reasonably well. Th e modeled fl ow was 1 d late and ceased 5 d too 
early. Th e total amount of streamfl ow was underestimated. Th e total 
measured streamfl ow for the validation period was 242 mm, while 
the total calculated streamfl ow was only 113 mm (see the calculated 
validation period water balance in Table 1). Compared with the cali-
bration period, the RMSE rose (140 vs. 81%), signaling more error. 
Surprisingly, the EF also rose compared to the calibration period 
(0.48 vs. 0.11). Th e relatively high EF for the validation period does 
not necessarily mean that the model’s ability to describe the system 
behavior has improved. Instead, the high EF seems to refl ect the rela-
tively high variance for the streamfl ow data during validation (921 vs. 
77 L2 min−2 for the calibration period). Th is high variance reduces 
the impact of model discrepancies on the EF statistic.

Th e measured and calculated snow depth, profi le-average soil water 
content, and profi le-average soil temperature for Pit 100 on the 
northeast-facing slope of the subcatchment are shown in Fig. 5. 
Note that the snow sensor is installed close to Pit 100 (see Fig. 1). 
Th ese validation results show that the temporal dynamics in snow 
depth (RMSE = 52%, EF = 0.84), soil water content (RMSE = 22%, 
EF = 0.83), and soil temperature (RMSE = 10%, EF = 0.96) were 
captured well by the model. Gaps in the data are due to equipment 
failure. Th e snow pack had completely melted by the time the equip-
ment was back online in April. Th e soil temperature data show that 
no signifi cant soil water freezing occurs during winter. Th is is due 
to the insulating properties of the overlying snow pack.

Figure 6 shows the measured and calculated profi le-average soil water 
content for TDR transect location SU20 on the southwest-facing 
slope of the subcatchment. Clearly, the performance of the model 
for SU20 is less satisfactory (RMSE = 37%, EF = 0.35) than for Pit 
100. Systematic discrepancies of ~0.025 and ~0.05 cm3 cm−3 are 

observed between the measured and calculated soil water contents for 
dry soil (August) and for the winter wet period (mid-December–mid-
February), respectively. Th ese discrepancies suggest that the soil water 
retention function used for the entire catchment (homogeneous soil 
assumption) is not ideal for the SU20 location. Paradoxically, the 
soil water retention parameters used for the catchment were deter-
mined from a multistep outfl ow experiment on an undisturbed soil 
sample taken near SU20 on the southwest-facing slope (Kelleners 
et al., 2009). Th e apparent overestimation of the initial soil water 
contents for SU20 is due to the fact that we initialized the model 
not by using measured data but by running the model twice, using 
the fi nal water contents of the fi rst run to describe the initial values 
for the second run.

A comparison between the measured and calculated snow depth 
and SWE for 57 points across the subcatchment on 10 Feb. 2004 is 
shown in Fig. 7. A distinction is made between points on northeast-
facing slopes, southeast-facing slopes, and southwest-facing slopes. 
Th ere are no northwest-facing slopes in the catchment. Calculated 
snow depths are all too high (top panel, r2 = 0.25 for all 57 points). 
Most calculated SWEs are also too high (bottom panel, r2 = 0.22). 
Th e diff erences between measured and calculated snow depth and 
SWE values are smallest for the northeast-facing slope.

Unfortunately, the automatic snow sensor on the northeast-facing 
slope was not functional on 10 February. Th e snow sensor data that 
are available for other dates show that measured snow depths are 
generally higher than calculated snow depths (Fig. 5). Th ese con-
tradictory results for the seven northeast points vs. the automatic 
sensor location are diffi  cult to reconcile. It may be that blowing 
snow settles around the snow sensor location while most of the 
subcatchment, including most of the northeast-facing slope, loses 
snow due to wind action. Th e eff ects of blowing snow on the spa-
tial snow distribution are not incorporated in the current model. 
Note that no snow physical parameters were calibrated in this 
study. Instead, default values were used based on detailed snow 
physical work by others in regions diff erent from ours (for details, 
see Kelleners et al., 2009).

Th e calculated water balance for the validation period is diff erent 
from the water balance of the calibration period (Table 1). Higher 
rainfall of 716 mm during the validation period led to more 
evapotranspiration (357 vs. 311 mm), more deep percolation (240 
vs. 215 mm), and more streamfl ow (113 vs. 64 mm). Calculated 
streamfl ow as a percentage of the total precipitation for the valida-
tion period is 16%, compared with 11% for the calibration period. 
Measured streamfl ow as a percentage of total precipitation is 14 
and 34% for the calibration and validation periods, respectively. 
Aishlin and McNamara (unpublished data, 2009) showed that 
the proportion of annual precipitation that goes to deep percola-
tion decreases in wet years and in years with rapid snowmelt. Th e 
model results show the same pattern, with 36% of annual precipi-
tation going to deep percolation during the calibration year and 
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34% going to deep percolation in the wetter validation year. Th e 
large discrepancy between measured and calculated streamfl ow for 
the validation period indicates that the model may need further 
improvement to accurately calculate the total amount of stream-
fl ow from the subcatchment.

 Discussion
Th e role of vegetation in the overall water balance of the sub-
catchment and in the generation of runoff  has received little 
attention in this study due to a lack of vegetation-specifi c data 
to check the model calculations. Both transpiration from dry 
leaf areas (root water uptake) and evaporation from wet leaf areas 
(intercepted water) are calculated by the model using state-of-
the-art algorithms taken mainly from Oleson et al. (2004) and 
discussed in detail in Kelleners et al. (2009). Th e calculation of 
the temporal dynamics in LAI using Eq. [16] and the assumption 
of uniform root water uptake throughout the entire soil profi le 
are admittedly simplistic and may be improved in the future. As 
an example, Fig. 8 shows the calculated transpiration rates T = 
SCeQtd/ρwγv for the Pit 100 and SU20 locations for the valida-
tion period (SCe is the eff ective soil cover, Qtd the latent heat fl ux 
for dry leaf surfaces, ρw the density of liquid water, and γv the 
latent heat of vaporization). Th e higher transpiration rates for 
Pit 100 are due to the higher soil cover (SCm = 0.55) and deeper 
soil (1.25 m) at this location than the SU20 location (SCm = 0.3, 
soil depth = 0.64 m). Total annual transpiration was 123 mm 
for Pit 100 and 70 mm for SU20. Th e model results suggest that 
plants resumed transpiration on 15 March (Pit 100) and 9 March 
(SU20) aft er most of the snow had melted.

Th e timing of snowmelt is critically important to model runoff  
generation in snowmelt-driven mountainous catchments. Th e melt-
ing process itself is determined by the surface energy balance. Th e 
modeling approach presented in this study was able to describe the 
temporal dynamics in snow accumulation, snowmelt, and soil tem-
perature with reasonable accuracy. Th is provides indirect evidence 
that the vegetation and ground surface energy balance calculations 
used are realistic, at least for the northeast-facing slope (Fig. 5). No 
independent leaf or surface temperature measurements are available 
for the subcatchment to test the surface energy balance calculations 
directly. Distributed surface temperature measurements as well as 
automated measurements of snow depth and soil temperature at 
diff erent locations in the subcatchment (not just on the northeast-
facing slope), would facilitate a more thorough testing of this part of 
the model. Incorporation of a blowing snow algorithm (e.g., Essery et 
al., 1999; Lehning et al., 2006) may further increase the predictive 
capabilities of the model.

Th e accuracy of the soil water content calculations diff ers for the 
northeast-facing slope (Pit 100) and the southwest-facing slope 
(SU20). Th is is attributed mainly to spatial variability in soil texture. 
It is unrealistic to expect that one set of soil physical parameters can 
accurately describe all soils in the subcatchment, despite the fact that 

the soil textural diff erences are relatively small. Direct measurement 
of grid-cell-specifi c and soil-layer-specifi c soil hydraulic properties is 
not practically feasible. Alternatively, soil hydraulic parameters may 
be estimated using pedotransfer functions (e.g., Gribb et al., 2009). 
Th is still leaves the eff ect of subgrid spatial variability, however, which 
is likely to be signifi cant in complex terrain. Determination of the 
statistical distributions of the hydraulic parameters of the catchment 
soils may be more advantageous going forward. Such parameter dis-
tributions cannot be used to predict the exact soil hydraulic properties 
at any given point in the landscape; however, the distributions can be 
used to assess the infl uence of soil spatial variability on the calculated 
streamfl ow (e.g., Feyen et al., 2007). A limitation of applying this type 
of stochastic technique is the large computational burden.

The amount of streamflow is strongly influenced by the parti-
tioning between deep percolation into the bedrock and lateral 
subsurface fl ow across the soil–bedrock interface. Lateral water 
fl ow through the weathered portion of the bedrock may also be 
important. Th e approach used in this study is admittedly simple. 
Our model may benefi t from the addition of a groundwater reser-
voir in the bedrock that drains part of its water to the stream in the 
subcatchment, eff ectively adding a base fl ow component. A more 
rigorous approach would solve the soil and bedrock water fl ow 
in all three dimensions using a three-dimensional fi nite element 
model (e.g., Ebel et al., 2008). Th is, however, is computationally 
expensive. Also, the lack of information on the spatial variabil-
ity in soil depth, subsurface preferential fl ow paths, and bedrock 
fracturing may not justify such a detailed approach. Th e modeling 
approach as presented in this study can be implemented in a geo-
graphic information system to ease the preparation of the model 
input data (e.g., Frankenberger et al., 1999).

 Conclusions
Th e distributed model presented in this study was able to capture 
the temporal dynamics in snowpack, soil water content, soil tem-
perature, and streamfl ow for a small mountainous catchment. Soil 
water content predictions for individual points in the landscape may 
be improved by relaxing the assumption of homogeneous soils in the 
model. Th e amount of total yearly streamfl ow was underpredicted 
by the model by 20% for the calibration period and by 53% for the 
validation period. Th is underestimation may be mitigated by includ-
ing a bedrock groundwater reservoir in the model that delivers water 
to the stream. In the present model, all deep percolation into the 
bedrock is removed from the system. Adjustments in the partition-
ing of deep percolation into the bedrock and lateral subsurface fl ow 
toward the stream may also improve the calculated streamfl ow.

Th e model calculations suggest that 50 to 53% of the yearly incoming 
precipitation in the subcatchment is consumed by evapotrans-
piration. Th e model results further suggest that 34 to 36% of the 
incoming precipitation is transformed into deep percolation into 
the bedrock, while only 11 to 16% is transformed into streamfl ow. 
Th e true partitioning between deep percolation and streamfl ow is 
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diffi  cult to determine. Th is partitioning is determined by conditions 
at the soil–bedrock interface, which may vary across the catch-
ment. Th e main strength of the model presented in this study is the 
description of the temporal dynamics of the system. Th e quality of 
the streamfl ow predictions can be improved by refi ning the model 
physics for lateral subsurface fl ow and by incorporating the model 
into a stochastic modeling framework.
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